九度oj-1109-连通图

题目描述:

    给定一个无向图和其中的所有边,判断这个图是否所有顶点都是连通的。

输入:

    每组数据的第一行是两个整数 n 和 m(0<=n<=1000)。n 表示图的顶点数目,m 表示图中边的数目。如果 n 为 0 表示输入结束。随后有 m 行数据,每行有两个值 x 和 y(0<x, y <=n),表示顶点 x 和 y 相连,顶点的编号从 1 开始计算。输入不保证这些边是否重复。

输出:

    对于每组输入数据,如果所有顶点都是连通的,输出"YES",否则输出"NO"。

样例输入:

4 3
1 2
2 3
3 2
3 2
1 2
2 3
0 0

样例输出:

NO

YES

 

题目分析:

利用并查集的思想来考虑图连通的问题,首先将每个节点的父节点置为-1,再不断的输入过程中调节父节点的值。最后如果图中仅有一个节点的父节点为-1,则图是连通图。

# include<stdio.h>
# define N 1000
int tree[N];
int findroot(int x)//找到x最终的根节点
{
	if(tree[x]==-1)
		return x;
	else
	{
		int tmp=findroot(tree[x]);//递归调用,将当前节点的根节点置为最终的根节点,这也是路径压缩的一种方式
		tree[x]=tmp;
		return tmp;
	}
}
int main()
{
	int n,m,i;
	while(scanf("%d%d",&n,&m)&&n)
	{
		for(i=1;i<N;i++)
			tree[i]=-1;//初始化,首先将所有节点的根节点置为-1,表示当前点是独立的集合
		for(i=1;i<=m;i++)
		{
			int x,y;
			scanf("%d%d",&x,&y);
			
			x=findroot(x);
			y=findroot(y);

			if(x!=y)
			{
				tree[x]=y;//调整当前的根节点
			}
		}
     
		int count=0;
		for(i=1;i<=n;i++)
		{
			//printf("%d ",tree[i]);
			if(tree[i]==-1)
			{
				count++;
			}
		}
		if(count==1)
			printf("YES\n");
		else
			printf("NO\n");
	}
	return 0;
}

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值