题目描述:
给定一个无向图和其中的所有边,判断这个图是否所有顶点都是连通的。
输入:
每组数据的第一行是两个整数 n 和 m(0<=n<=1000)。n 表示图的顶点数目,m 表示图中边的数目。如果 n 为 0 表示输入结束。随后有 m 行数据,每行有两个值 x 和 y(0<x, y <=n),表示顶点 x 和 y 相连,顶点的编号从 1 开始计算。输入不保证这些边是否重复。
输出:
对于每组输入数据,如果所有顶点都是连通的,输出"YES",否则输出"NO"。
样例输入:
4 3
1 2
2 3
3 2
3 2
1 2
2 3
0 0
样例输出:
NO
YES
题目分析:
利用并查集的思想来考虑图连通的问题,首先将每个节点的父节点置为-1,再不断的输入过程中调节父节点的值。最后如果图中仅有一个节点的父节点为-1,则图是连通图。
# include<stdio.h>
# define N 1000
int tree[N];
int findroot(int x)//找到x最终的根节点
{
if(tree[x]==-1)
return x;
else
{
int tmp=findroot(tree[x]);//递归调用,将当前节点的根节点置为最终的根节点,这也是路径压缩的一种方式
tree[x]=tmp;
return tmp;
}
}
int main()
{
int n,m,i;
while(scanf("%d%d",&n,&m)&&n)
{
for(i=1;i<N;i++)
tree[i]=-1;//初始化,首先将所有节点的根节点置为-1,表示当前点是独立的集合
for(i=1;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
x=findroot(x);
y=findroot(y);
if(x!=y)
{
tree[x]=y;//调整当前的根节点
}
}
int count=0;
for(i=1;i<=n;i++)
{
//printf("%d ",tree[i]);
if(tree[i]==-1)
{
count++;
}
}
if(count==1)
printf("YES\n");
else
printf("NO\n");
}
return 0;
}