svm线性分类代码,可直接运行

#encoding=utf-8
"""
@author=wanggang
data:1.5,2020
"""
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
x_data=np.r_[np.random.randn(20,2)-[-2,2],np.random.randn(20,2)+[2,2]]
y_data=[0]*20+[1]*20
#print(y_data)
plt.scatter(x_data[:,0],x_data[:,1],c=y_data)
plt.show()
#_________________________________
#model
model=svm.SVC(kernel='linear')
model.fit(x_data,y_data)
print(model.coef_)
print(model.intercept_)#这是截距
#获取分离平面
plt.scatter(x_data[:,0],x_data[:,1],c=y_data)
x_test=np.array([[-5],[5]])
d=-model.intercept_/model.coef_[0][1]
k=-model.coef_[0][0]/model.coef_[0][1]
y_text=d+k*x_test
plt.plot(x_test,y_text,'k')
plt.show()
#输出支持向量------------
print(model.support_vectors_)
b1=model.support_vectors_[0]
y_down=k*x_test+(b1[1]-k*b1[0])
b2=model.support_vectors_[-1]#这里是-1
y_up=k*x_test+(b2[1]-k*b2[0])
plt.scatter(x_data[:,0],x_data[:,1],c=y_data)
x_test=np.array([[-5],[5]])
d=-model.intercept_/model.coef_[0][1]
k=-model.coef_[0][0]/model.coef_[0][1]
y_text=d+k*x_test
plt.plot(x_test,y_text,'k')
plt.plot(x_test,y_down,'r--')
plt.plot(x_test,y_up,'b--')
plt.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值