机器学习进阶路上不可错过的 28 个视频

想自学机器学习和深度学习?不妨边看专家讲解视频边自学。不仅能感受世界各地专家的熏陶,也能快速获取知识,一举两得。这篇文章整理了一个 YouTube 视频列表,供希望在该领域学习的朋友使用。

  视频观看建议

  我将视频分为三类:机器学习、神经网络、深度学习。为方便起见,你可以使用我创建的列表按顺序学习。特别推荐初学者根据顺序学习,以更好地理解视频。

  这套参考视频集需要时间消化,若觉得视频太多请根据需要调节每次的学习时长。视频长度从几分钟到几小时不等。我已写出每个视频的摘要,供读者查阅。

  一、机器学习相关视频

  1. 机器人和人工智能的未来(斯坦福大学,吴恩达)

 机器学习

  原标题:The Future of Robotics and Artificial Intelligence

  链接:https://www.youtube.com/watch?v=AY4ajbu_G3k&feature=youtu.be

  时长:16 分钟 26 秒

  总结:开启机器学习之旅最好的方法就是,莫过于听全世界最好的老师和专家讲课。斯坦福大学 的吴恩达在此讲述了自己幼时的梦想,创造一个可以像人类一样思考和工作的机器人,并改善千万人的生活。另外,他还探讨了人类大脑和使机器行为更类人的软件之间的相似性。

  2. 吴恩达机器学习讲座系列

  原标题:Lecture Collection | Machine Learning(Stanford)

  链接:https://www.youtube.com/playlist?list=PLA89DCFA6ADACE599

  时长:每课大约一个小时

  总结:这是斯坦福大学吴恩达教授的斯坦福大学里所有机器学习课程列表。我从中受益良多,个人认为该课程比 Coursera 上的课程还要精彩。

  视频中包含的机器学习概念有,线性/对数回归,监督学习和非监督学习,学习理论,强化学习和自适应控制等。他还讨论了以下技术,包括朴素贝叶斯、神经网络、支持向量机(SVM)、贝叶斯统计、正则化(Regularization)、聚类(Clustering)、主成分分析(PCA)、独立成分分析(ICA)。其中还涉及了机器学习近期的应用,如机械控制、数据挖掘、自主导航、生物信息学、语音识别、文本和网络数据处理等。

  如果你是个对这项技术还没有清晰概念的小白,希望选择透彻清晰的介绍性视频,可以选择这个视频开始学习。

  3. 从数据中学习 – Caltech

  原标题:Learning from Data – Caltech

  链接:https://www.youtube.com/playlist?list=PLD63A284B7615313A

  时长:每课大约一个半小时

  总结:这是 Caltech(加州理工大学)的机器学习课程,其中共含 18 个视频。Yaser Abu-Mostafa 教授详细论述了机器学习的各种概念和技术。其中涉及了大量的数学知识和机器学习背后的理论,还附有一些有难度的编程练习。本课程将理论与实践相结合,从数学和启发式的角度进行讲解,每节视频之间像讲故事一样承前启后。我推荐学习者完成课程作业。

  4.使用 Python,通过声音编码

  原标题:Using Python to Code by Voice

  链接:https://www.youtube.com/watch?v=8SkdfdXWYaI

  时长:28 分16 秒

  总结:Tavis Rudd 在这段精彩视频中说,他曾花费两年时间研发出这个用声音识别进行编码的特性,这个特性非常出色。他用 Python 和 Emacs Lisp 进行了大量的词汇调整(vocab tweaking)和管道胶带编码(duct-tape coding),进而打造了一个编码速度更快的系统。他进行了现场展示,根据他的声音,该系统几秒钟内就能执行操作,而正常情况下这需要耗时几个小时。

  5.使用 Python 做基于云的机器学习

  原标题:Python-Powered Machine Learning in the Cloud

  链接:https://www.youtube.com/watch?v=dHP7qo2xyX0

  时长:18 分

  总结:Stephen Hoover 在该视频中讲到,他任职的公司 Civis Analytics 有个用 Python 构建的基于云的数据科学平台,该平台可用来分析数据,可以帮助分析师很轻易地大步提高工作效率。他还讲述了该平台机器学习的多个方面,以及在Python 中有助于数据分析的一些开源库,比如 Pandas,NumPy ,Scikit-Learn。

  如果你已经坚持到了现在,我表示祝贺!完成下一个视频,就可以探索后面的神经网络和深度学习了。如果你小时候也是个马里奥迷,那你肯定会更对下面这个视频感兴趣的!

  6. MarI/O ,完视频游戏的机器学习

  原标题:MarI/O – Machine Learning for Video Games

  链接:https://www.youtube.com/watch?v=qv6UVOQ0F44

  时长:6 分

  总结:视频展示了一个叫做 MarI/O 的计算机程序学习玩超级马里奥游戏的过程。该程序由神经网络和遗传算法构建而成。从视频中可以看到,与人脑相比该程序真正地发生了生物演进。这个程序是机器学习应用中一个很出色的案例,展现了在各种人类活动中机器学习广泛的可用性。

  二、神经网络相关视频

  1.神经网络入门指导

  原标题:Getting started with Neural Networks

  链接:https://www.youtube.com/playlist?list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH

  时长:每个大约 8 分钟

  总结:这个播放列表叫做神经网络课程(Neural Network Class)。其中包括神经网络中从基础到进阶的各种概念,包括人工神经元,激活函数,递归网络训练等。视频内容简短而节奏明快,每个视频最长不超过24分钟。我推荐所有开始学习神经网络的人观看该课程。

  2.神经网络训练第一部分:训练过程

  原标题:Neural Network Training Part 1: The Training Process

  链接:https://www.youtube.com/watch?v=CVJOseIJnww

  时长:12 分 40 秒

  总结:该系列视频讲述了如何训练一个神经网络,即神经网络训练。视频中可以非常简便地预览整个训练课程。在 YouTube 点击该视频上的「Up Next 」 可以看到后续视频,比如神经网络误差计算,梯度计算等课程。

  3. 人工神经网络简介

  原标题:Introduction to Artificial Neural Networks

  链接:https://www.youtube.com/watch?v=xbYgKoG4x2g

  时长:54分

  总结:印度理工学院的 S. Sengupta 教授说,人工神经网络运用了非线性,这有助于输入输出映射的过程。他使用纸和笔,以最简洁的方式完美地阐释了人工神经网络的概念,理解起来非常容易。视频最后他简单讲解了人工神经网络的应用情况。不要忘记点击「Up Next 」观看后续视频。

  4.Matt Zeiler:深度神经网络的可视化与理解

  原标题:Visualizing and Understanding Deep Neural Networks by Matt Zeiler

  链接:https://www.youtube.com/watch?v=ghEmQSxT6tw

  时长:47 分40 秒

  总结:卷积神经网络常用来识别物体、图像和视频。在这个 47 分钟的视频中,你会了解反卷积神经网络的概念,以及讲者对卷积网络中结构选择的看法。可视化的作用就是展示每一层网络性能信息,以使整个网络性能提高。

  5. 下一代神经网络

  原标题:The Next Generation of Neural Networks

  链接:https://www.youtube.com/watch?v=AyzOUbkUf3M

  时长:1 小时 2 分1 秒

  总结:GoogleTechTalks 上,著名的 Geoffery Hinton 做了一番关于神经网络的丰富演讲。该视频将为你的深度机器学习打下坚实的基础。你还可以通过视频了解神经网络的前世今生。Geoff 提到的话题包括反向传播(BP)、数字识别、受限玻尔兹曼机等相关内容。

  6.神经 Bots——进化的人工智能

  原标题:Neural Bots – Evolving Artificial Intelligence

  链接:https://www.youtube.com/watch?v=1iamM0SuPto

  时长:4 分 40 秒

  总结:该视频通过设计的「神经 Bots」程序阐释了使用进化的神经网络的人工智能,并用一组预定义的指令让该 Bots 的完整活动进行了可视化,内容非常有趣。

  7. 用于口语和翻译词的语音识别技术突破

  原标题:Speech Recognition Breakthrough for the Spoken, Translated Word

  链接:https://www.youtube.com/watch?v=Nu-nlQqFCKg

  时长:9 分 4 秒

  总结:该视频由 Microsoft Research 上载,是微软首席研究官 Rick Rashid 一段简短的演讲视频。Rick Rashid 展示了使用深度神经网络和翻译技术(英语口语翻译成汉语)给语音识别技术带来的突破,与此同时,语音识别技术的常见错误的数量也减少了。

  8. 跟细菌学习社交网络

  原标题:Learning from Bacteria about Social Networks

  链接:https://www.youtube.com/watch?v=yJpi8SnFXHs

  时长:1 小时 4 分 3 秒

  总结:该视频中讲述了关于学习的非常规话题:向细菌学习信息处理。演讲者从基础智能开始讲述,包括认知、感觉、处理等。还展示了重新思考细菌的模式。最后,他认为可以认为细菌中的「化学 Twitter 」促进了细菌对社交网络的使用。

  9. 遗传算法,学习如何跳过球

  原标题:Genetic algorithm. Learning to jump over ball

  链接:https://www.youtube.com/watch?v=Gl3EjiVlz_4

  时长:3 分

  总结:视频的名字很清楚地描述了内容。该视频展示了一个「基因」学会跳过球的整个过程。

  10. 一个知道如何战斗的遗传算法!

  原标题:A genetic algorithm learns how to fight!

  链接:https://www.youtube.com/watch?v=u2t77mQmJiY

  时长:2 分 15 秒

  总结:跟上个视频一样,该视频重点描述了神经网络广泛的应用。在该视频中,一个遗传算法学会了如何战斗。这个视频让我认识到了神经网络极强的可塑性,从而提振了我的学习兴趣。

  三、深度学习相关视频

  1. 用 Python 实现深度学习简介

  原标题:Introduction to Deep Learning with Python

  链接:https://www.youtube.com/watch?v=S75EdAcXHKk

  时长:52 分 40 秒

  总结:该视频讲解了如何用 Python 实现深度学习。其从介绍手写数字识别的一个「激发兴趣」的问题开始。还演示了解决基于 60,000 张图像的数据集问题所用的全部 Python 代码。 然后讲解者重点讲解了代码,确保自己没有错过其中任何重要的代码和算法。

  2. 用 Theano 和 OpenDeep 实现深度学习(Markus Beissinger)

  原标题:Intro to Deep Learning with Theano and OpenDeep by Markus Beissinger

  链接:https://www.youtube.com/watch?v=afUvcD3tEoQ&feature=youtu.be

  时长:1 小时 9 分 4 秒

  总结:要理解深度学习的概念,该视频是个不错的开始。演讲者 Markus 刚开始先阐释了深度学习背后的故事,然后快速回顾了线性代数,接着是基本的神经网络、无监督模型和 RNN-GSN 深度学习模型。后面又阐释了在 Python 中如何用 Theano 实现简单的神经网络。

  3. 深度学习:来自大数据的智能

  原标题:Deep Learning: Intelligence from Big Data

  链接:https://www.youtube.com/watch?v=czLI3oLDe8M

  时长:1 小时 24 分 6 秒

  总结:这段演讲介绍了将深度学习和大数据整合起来新概念。深度学习已经开始从大数据技术中获取重要价值。视频后半段,谷歌、Facebook 等科技巨头的研究科学家进行了一次非常有用的讨论。该讨论涉及到对深度学习和大数据技术的未来发展至关重要的大部分元素。

  4. 用于计算机视觉的深度学习(Rob Fergus)

  原标题:Deep Learning for Computer Vision (Rob Fergus)

  链接:https://www.youtube.com/watch?v=qgx57X0fBdA

  时长:1 小时 58 分

  总结:这是我找到的第一个关于计算机视觉的教程。该教程解释了各种概念,如空间池化、归一化、图像分类等。最后基于一系列有用的图像展示了各种新奇的应用。

  5. 卷积神经网络

  原标题:Convolutional Neural Networks

  链接:https://www.youtube.com/watch?v=bEUX_56Lojc

  时长:50 分 30 秒

  总结:牛津大学计算机科学系发布的该教程。目前为止这是已发现的包含卷积网络内容最多的视频。演讲者探讨了在对象识别和语言问题上使用卷积网络的概念,以及如何设计卷积层和池化层的方法。视频后半段讨论了在 Torch 中构建卷积网络的流程。

  6. 无监督特征学习和深度学习(吴恩达)

  原标题:Unsupervised Feature Learning and Deep Learning – Andrew Ng

  链接:https://www.youtube.com/watch?v=ZmNOAtZIgIk

  时长:48 分 20 秒

  总结:该视频主讲者为 Coursera 创始人吴恩达。吴先生讲述了无监督特征学习和深度学习的发展,而深度学习可以自动将特征数据的特征表征出来。他还描述了无监督特征学习和深度学习背后一些概念,描述了几个算法,并还展示了一个相关的案例研究。

  7. Geoff Hinton:深度学习近期进展

  原标题:Geoff Hinton: Recent Developments in Deep Learning

  链接:https://www.youtube.com/watch?v=VdIURAu1-aU

  时长:1 小时 5 分 20 秒

  总结:机器学习开创者之一 Geoff Hinton 在视频中讲述了深度学习的最新进展。他强调了各种算法的数学方面,提到各种深度学习应用的成功案例,如对象识别、信息检索、根据动作捕捉数据建模等。

  8. 采访谷歌人工智能和深度学习 「教父」Geoffrey Hinton

  原标题:Interview with Google’s AI and Deep Learning ‘Godfather’ Geoffrey Hinton

  链接:https://www.youtube.com/watch?v=1Wp3IIpssEc

  时长:27分30秒

  总结:这是一段 Geoffrey Hinton 接受采访的音频。他在其中讲述了谷歌如何实现人工智能系统。另外,他还重点说明了人类的学习组件,以及使用神经网络的机器等。对每个机器学习爱好者来说,这个是一个必听的讲解。

  9. 学习表征 :学习理论下一个挑战

  原标题:Learning Representations: A Challenge for Learning Theory

  链接:https://www.youtube.com/watch?v=lBUqyn30chk

  时长:54 分 31 秒

  总结:纽约大学计算机科学系的 Yann LeCun 讲述了一些学习理论难以应用的领域,并将其作为业界研究的挑战提了出来。他提到了各种深度学习的概念,尤其表达了自己对学习表征的兴趣;他认为学习表征将成为人工智能机器学习技术的下一步。

  10. 深度学习将如何实现无人驾驶

  原标题:How Deep Learning Will Enable Self Driving Cars

  链接:https://youtu.be/2NGnvGS0AtQ

  时长:1 小时 5 分 30 秒

  总结:该视频来自 NVIDIA 的深度学习专家 Mike Houston。他提到一个叫做 NVIDIA DIGITS 的深度学习训练系统,还有能使汽车自动驾驶的 NVIDIA DRIVE PX 平台。以及他们的团队在打造无人驾驶汽车和深度学习算法时用到的训练工具和平台。

  11. 用于决策制定和控制中的深度学习

  原标题:Deep Learning for Decision Making and Control

  链接:https://www.youtube.com/watch?v=EtMyH_--vnU

  时长:56 分 2 秒

  总结:视频中,博士后研究员 Sergey Levine 与加州大学伯克利分校的 Pieter Abbeel 教授一起,探讨了在决策制定和控制中深度学习的应用。最后 Sergey 重点说明了连续控制任务(Continuous Control Tasks ) 等其他更加广泛的应用方式,另外还描述了使用监督学习算法解决这些问题的方式。

  12. 用于构建智能计算机系统的大规模深度学习

  原标题:Large-Scale Deep Learning for Building Intelligent Computer Systems

  链接:https://youtu.be/4hqb3tdk01k

  时长:1 小时 23 秒

  总结:谷歌知识部门(Google Knowledge Group )的高级研究员 Jeff Dean 在视频中讲解了使用神经网络和深度学习构建更智能的计算机系统的方法。他重点讨论了计算机系统的能力,如基本的语音和视觉、语言理解和用户行为预测能力,并说明了这些技术在谷歌的各种产品中的应用情况。








1. 吴恩达“机器学习”公开课

  

  课程名称:机器学习 Machine Learning

  主讲人:吴恩达 Andrew Ng

  授课机构:斯坦福大学

  发布平台:Coursera

  语言:英语,汉语字幕

  网址:https://www.coursera.org/learn/machine-learning

  无论国内国外,这是最火的机器学习入门课程,没有之一。无数新手都是通过这门课对机器学习初窥门径。吴恩达老师用极其清楚直白的语言,对机器学习的几种主要算法做了初步介绍。

  这门课最大的特点,是它侧重于概念理解而不是数学。数学推导过程基本被略过,重点放在让初学者理解这背后的思路。另外,它还十分重视联系实际和经验总结:1. 课程中吴恩达老师列举了许多算法实际应用的例子 2. 他提到当年他们入门 AI 时面临的许多问题,以及处理这些难题的经验。

  课程中代码教程使用的是 Octave/MATLAB,因此不需要会 Python、C 语言,适合没有编程基础的新手。

  总结起来,这门课对数学、统计、IT 基础薄弱的童鞋十分友好。其实很多机器学习入门课,都是假定学生已修完这一门,于是重点对其进行补充——讲解这门课程中吴恩达老师未涉及、或是涉及不深的话题。因此,对于机器学习 “一张白纸”的童鞋,AI科技评论强烈推荐从这门课起步,然后选择其他入门课程进阶,以在脑海中建立起更全面的知识体系。另外,Coursera 上这门课的论坛十分活跃,不管抛出什么问题都会有人解答,算是一个额外的好处。

  彩蛋:网易公开课上有吴恩达老师在斯坦福授课的实录视频。内容比较深入,但时间比较久了,可作为进阶姊妹篇。地址:http://open.163.com/special/opencourse/machinelearning.html

  2. 加州理工 “从数据中学习”

  

  课程名称:Learning from Data,网易公开课译名为“加州理工学院公开课:机器学习与数据挖掘”

  主讲人:Yaser Abu-Mostafa

  授课机构:加州理工学院

  发布平台:edX(原版),网易公开课

  语言:英语,网易有汉语字幕

  网址: https://www.edx.org/course/caltechx/caltechx-cs1156x-learning-data-2516,edX;

  http://open.163.com/special/opencourse/learningfromdata.html,网易。

  这同样是一门机器学习的入门课,但并不简单。该课程强调数据,是因为机器学习与各领域的大数据处理应用(比如金融、医疗)联系十分紧密。这门课内容涵盖基础理论、算法和应用,平衡了理论与实践,既覆盖数学统计,也包含启发式的概念理解。

  课程结构是这样的:

  什么是学习?

  机器能学习吗?

  怎么做到?

  怎么做好?

  经验教训。

  不少人评论该课程结构就像讲故事,它有助于学习者形成对机器学习概念和模型深度、直觉性的理解。学习者公认它内容非常充实,但对作业模块的争议很大:有人认为难度偏高并且缺乏反馈,有人认为它是网上能找到的、最好的机器学习练习。

  彩蛋:Yaser Abu-Mostafa 出版了同名著作 《Learning From Data》,可作为该课程的教材和补充。

  3. Tom Mitchell 机器学习课程

  课程名称:机器学习 Machine Learning

  主讲人:Tom Mitchell

  授课机构:卡内基梅隆大学(CMU)

  发布平台:CMU 官网

  语言:英语

  网址:http://www.cs.cmu.edu/~tom/10701_sp11/

  这门课是学界人士的最爱,是入门课程之中较全面、高阶的一门。课时为 15 周,远超大多数机器学习慕课。其覆盖的话题非常广,按先后次序包括:代数和概率论,机器学习的基础工具,概率图模型,AI,神经网络,主动学习,增强学习。课程内容和练习十分简洁明白,概念解释清楚到位。

  Tom Mitchell 是 AI 领域德高望重的老牌宗师,他的《Machine Learning》 (中文版为《计算机科学丛书:机器学习》),是最经典的机器学习教科书之一。但因为时间久远,涉及的一些概念与今天的开发者并没有太大关联,更适合需要了解人工智能来龙去脉的大学师生。这门课程与之类似,能帮助学习者理清机器学习的发展脉络。它适合计划进行系统性学习、投入大量时间的人。

  对于初学者,建议至少听完吴恩达的机器学习课程之后,再修这一门。

  4. 台大林轩田老师的機器學習基石

  

  课程名称:機器學習基石

  主讲人:林轩田

  授课机构:台湾大学

  发布平台:Coursera

  语言:汉语

  这是为汉语学子量身定做的入门课,相当于台湾大学机器学习课程前半学期的课,教给大家的是机器学习最核心的知识。林老师是教科书《Learning From Data》 的作者之一,是华人机器学习领域年轻有为的青年学者。这门课程十分用心细致,内容比吴恩达老师的入门课程稍稍充实一些。

  林老师表示,针对顶级机器学习公开课全是英语授课的现状,不少学生反映英语教学有不易吸收之处。因此,借推出这门课程,希望帮助汉语为母语的学生减少入门难度。

  针对如何让学生接受枯燥的算法,林老师说道:

  “我们的课程设计中,大家会看到我们把对算法与数学式的推导,以‘解决问题’的过程方式呈现。也就是说,我们对算法的介绍是环绕着‘为什么’出发的,当同学们脑中有‘为什么’的时候,就有目标去理解这些算法与数学式的内容了。”

  《Learning From Data》 也可作为这门课的教科书。学习 Yaser Abu-Mostafa 的课程有不解之处,可与这门课互相印证。

  目前该课程已在 Coursera 下架,何时重开尚属未知。好在网易公开课、YouTube 倒是有全套视频,地址是:http://c.open.163.com/coursera/courseIntro.htm?cid=938 以及 https://www.youtube.com/playlist?list=PLXVfgk9fNX2I7tB6oIINGBmW50rrmFTqf。更多课程资料可从台大官网找到(网页为英语)http://www.csie.ntu.edu.tw/~htlin/mooc/。

  彩蛋:台大 2015 年机器学习课程的大纲以及学习资料(PPT):https://www.csie.ntu.edu.tw/~htlin/course/ml15fall/,可作为补充。顺便提一句,林老师把台大后半学期的课程开成另一门 Coursera 课程“机器学习技巧”,作为进阶。目前 Coursera 也已撤下。网易公开课地址为 http://c.open.163.com/coursera/courseIntro.htm?cid=1664。

  5. 谷歌人工智能入门

  

  课程名称:人工智能入门 Intro to Artificial Intelligence

  主讲人:Peter Norvig,Sebastian Thrun

  授课机构:谷歌

  发布平台:优达学城 Udacity

  语言:英语,汉语字幕

  网址:https://cn.udacity.com/course/intro-to-artificial-intelligence--cs271

  该课程久享盛名,是 AI 入门最好的公开课之一(AI科技评论注:有人认为可以去掉“之一”)。

  严格来说,它并不是一门机器学习课程。但其中有一周的主题是机器学习,它还介绍了另外几个 AI 主要领域:概率推理、信息检索、机器人学、自然语言处理等。鉴于学习机器学习的童鞋,几乎都会对 AI 这个大学科有兴趣——这门课程便是探索机器学习周边与交叉领域的绝好机会。

  两位主讲者,Peter Norvig 和 Sebastian Thrun,一个是谷歌研究总监,一个是斯坦福著名机器学习教授,均是与吴恩达、Yann Lecun 同级别的顶级 AI 专家。

  需要强调的是,该课程倾向于介绍 AI 的实际应用。课程练习广受好评。

  6. UBC 本科生的机器学习课程

  

  课程名称:面向本科生的机器学习课 Machine Learning for Undergraduates

  主讲人: Nando de Freitas

  授课机构:英属哥伦比亚大学(UBC)

  发布平台:Youtube

  语言:英语

  网址:https://www.youtube.com/playlist?list=PLE6Wd9FR--Ecf_5nCbnSQMHqORpiChfJf

  Nando de Freitas 是机器学习领域非常杰出的学者。他的这门课很适合作为吴恩达老师“机器学习”的进阶课程,因为:1. “机器学习”省略掉的一些概念,可以在这门课中找到。2. “机器学习”课 不重视数学,而数学是这门课的重点内容。Nando de Freitas 对诸如概率论、log likelihood 等基础数学原理做了很好的讲解,并以此为基础介绍更高级的数学、统计概念。

  对于机器学习新手,完全略过数学细节是很危险的,这门课会帮助你打下基础。

  但是,它录制于 2012 年,时间也比较久了。因此,AI科技评论特意奉上彩蛋一枚。

  彩蛋:Nando de Freitas 2013 年转入牛津大学任教。这是他 2014-2015 学年在牛津的全套深度学习课程,包括视频、PPT 以及练习:https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/ (视频保存在 Youtube,需翻墙)。

  7. Yann Lecun 深度学习公开课

  

  课程名称:深度学习 Deep Learning

  主讲人:Yann Lecun

  授课机构:法兰西学院

  发布平台:法兰西学院官网

  语言:法语,英语字幕

  网址:https://www.college-de-france.fr/site/en-yann-lecun/course-2016-04-15-11h00.htm

  Yann Lecun 在 2016 年初于法兰西学院开课,这是其中关于深度学习的 8 堂课。当时是用法语授课,后来加入了英文字幕。

  作为人工智能领域大牛和 Facebook AI 实验室(FAIR)的负责人,Yann Lecun 身处业内机器学习研究的最前沿。他曾经公开表示,现有的一些机器学习公开课内容已经有些过时。通过 Yann Lecun 的课程能了解到近几年深度学习研究的最新进展。该系列可作为探索深度学习的进阶课程。

  8. Geoffrey Hinton 深度学习课程

  

  课程名称:神经网络用于机器学习 Neural Networks For Machine Learning;网易译名“神经网络的机器学习”

  主讲人:Geoffrey Hinton

  授课机构:多伦多大学

  发布平台:Coursera、网易公开课

  语言:英语,汉语字幕

  网址:https://www.coursera.org/learn/neural-networks,Coursera;

  http://c.open.163.com/coursera/courseIntro.htm?cid=77,网易

  深度学习必修课程,讲师为该领域的一代宗师 Geoffrey Hinton。

  这门课程聚焦于神经网络和深度学习,是深入了解该领域最好的课程之一(AI科技评论注:很多人认为可以去掉“之一”)。

  课程官方介绍:

  “(你会在这门课)学习人工神经网络以及它们如何应用于机器学习,比方说语音、物体识别,图像分割(image segmentation),建模语言、人体运动等等。我们同时强调基础算法,以及对它们成功应用所需的实用技巧 。”

  这门课录制于 2013-2013,时效性上不如 Yann Lecun 的法兰西学院公开课,建议两者结合。另外,它要求微积分、Python 基础,涉及许多专有名词,对初学者难度较大,需自己查找相关资料。

  9. 哥伦比亚大学的机器学习公开课

  

  课程名称:机器学习 Machine Learning

  主讲人:John W. Paisley

  授课机构:哥伦比亚大学

  发布平台:edX

  语言:英语

  网址:https://www.edx.org/course/machine-learning-columbiax-csmm-102x

  在这份大牛云集的榜单中,该课程的主讲者——哥伦比亚大学副教授 John Paisley,只是一名相对普通的青年学者。但是,这门课程将于两天后,也就是 2017 年 1 月 16 日首次开课。这使它成为时下最新的机器学习入门课程。要知道,近一两年来人工智能和机器学习的发展完全可以用“日新月异”来形容——涌现的新方法、新理论,即便是一流专家也有目不暇接之感。换句换说,三、四年前的课程,可能现在有许多内容已经过时了。

  这是 Yann LeCun 提醒大家注意学习资源时效性的原因所在。

  可惜许多一流的机器学习公开课,距离录制都有些久了。我们知道一堂公开课背后所耗费的巨大人力。因此,对于部分课程在近两三年并没有更新的事实,倒也不能去怪主讲者和平台。但这使得比较新、时效性较强的课程格外可贵。

  这门课中,学习者会了解到机器学习的算法、模型和方法,以及它们在现实生活中的应用。

  由于是首次开课,尚没有对该课程的反馈。但鉴于哥伦比亚大学的研究、教学实力,课程品质应当值得期待。

  10. MIT 进阶课程

  

  课程名称:机器学习 Machine Learning

  主讲人:Tommi Jaakkola

  授课机构:麻省理工学院(MIT)

  发布平台:MIT Opencourseware

  语言:英语

  网址:https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-867-machine-learning-fall-2006/index.htm

  这是一门研究生水平的机器学习课程,难度较高。可惜的是,MIT 并没有提供课程视频,而是以参考书目和课堂笔记的形式,让我们得以一窥该课程的内容。小编认为,这些学习资源的价值仍旧不可估量。因为如此,相比常规公开课,它不会耗费过多时间,非常适合有一定基础的学习者印证自己所学。

  小结

  这就是AI科技评论为您盘点的十大最有价值的机器学习入门公开课。这些课程有浅有深,分别对机器学习不同领域、方面有所侧重。各位童鞋可根据自己所需,自行选择最适合自己的课程。不过,小编必须提醒各位,所有盘点都不可避免得掺杂了主观因素。虽然AI科技评论已尽力按照课程质量与业内人士的评价来制定该推荐榜,但自知无法做到十足的公正客观。比方说,该榜单倾向于机器学习的“入门”,而非开发者进阶;倾向于概念、算法学习,而非实战技巧(比如 Python 教程);倾向于把全世界范围内最好的课程推荐给诸君,而对英语基础较差的学习者照顾不足。榜单之外尚有许多有价值、适应不同层次人士需求的公开课。因此,AI科技评论特意列举了几个比较好的系统性机器学习课程以及学习平台,弥补该榜单不足,以供参考。



已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页