矩阵快速幂 NOY 301

对于一个递推式,如果n太大,那么可以用矩阵快速幂把O(n)的复杂度降到O(logn).

题意:

求递推公式:

f(x)=a*f(x-2)+b*f(x-1)+c,并给你f(1),f(2)的值,请求出f(n)的值,由于f(n)的值可能过大,求出f(n)对1000007取模后的值。

1<=n<=100000000 (10^9).

输出
输出f(n)对1000007取模后的值。

分析:
f(x)=a*f(x-2)+b*f(x-1)+c
     =b*f(x-1)+a*f(x-2)+c;矩阵构造如下:


PS:要用ll,用int回越界。

AC代码:

#include<cstdio>
#include<cstring>
#include <iostream>
#define MaxN 3
#define MOD 1000007
typedef long long ll;

struct Matrix{
    ll matrix[MaxN][MaxN];
};


Matrix operator * (Matrix a,Matrix b){
    Matrix c;
    memset(c.matrix,0,sizeof(c.matrix));
    for(int k=0;k<MaxN;k++){
    
        for(int i=0;i<MaxN;i++)
            for(int j=0;j<MaxN;j++)
                c.matrix[i][j]= (c.matrix[i][j]+a.matrix[i][k]*b.matrix[k][j])%MOD;
    
    }
        
    return c;
}

Matrix operator ^ (Matrix a,int k){

    Matrix c;
    
    memset(c.matrix,0,sizeof(c.matrix));
    for(int i=0;i<MaxN;i++)
        for(int j=0;j<MaxN;j++)
            c.matrix[i][j]= (i==j);
        
    for(;k>0;k>>=1){
        if(k&1) c=c*a;
        a=a*a;
    }
    
    return c;
}



int main(int argc, const char * argv[]) {
    
    int T,n;
    ll f1,f2,a,b,c;
    
    scanf("%d",&T);
    while(T--){
        scanf("%lld%lld%lld%lld%lld%d",&f1,&f2,&a,&b,&c,&n);
        n--;
        Matrix left;
        
        left.matrix[0][0]=b;
        left.matrix[0][1]=a;
        left.matrix[0][2]=c;
        left.matrix[1][0]=1;
        left.matrix[2][2]=1;
        left.matrix[1][1]=left.matrix[1][2]=left.matrix[2][0]=left.matrix[2][1]=0;
        Matrix res;
        res.matrix[0][0]=f2;
        res.matrix[1][0]=f1;
        res.matrix[2][0]=1;
        res=(left^n)*res;
        
        printf("%lld\n",(res.matrix[1][0]+MOD)%MOD);
    }
    
    return 0;
}


weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值