对于一个递推式,如果n太大,那么可以用矩阵快速幂把O(n)的复杂度降到O(logn).
题意:
求递推公式:
f(x)=a*f(x-2)+b*f(x-1)+c,并给你f(1),f(2)的值,请求出f(n)的值,由于f(n)的值可能过大,求出f(n)对1000007取模后的值。
1<=n<=100000000 (10^9).
输出
PS:要用ll,用int回越界。
AC代码:
#include<cstdio>
#include<cstring>
#include <iostream>
#define MaxN 3
#define MOD 1000007
typedef long long ll;
struct Matrix{
ll matrix[MaxN][MaxN];
};
Matrix operator * (Matrix a,Matrix b){
Matrix c;
memset(c.matrix,0,sizeof(c.matrix));
for(int k=0;k<MaxN;k++){
for(int i=0;i<MaxN;i++)
for(int j=0;j<MaxN;j++)
c.matrix[i][j]= (c.matrix[i][j]+a.matrix[i][k]*b.matrix[k][j])%MOD;
}
return c;
}
Matrix operator ^ (Matrix a,int k){
Matrix c;
memset(c.matrix,0,sizeof(c.matrix));
for(int i=0;i<MaxN;i++)
for(int j=0;j<MaxN;j++)
c.matrix[i][j]= (i==j);
for(;k>0;k>>=1){
if(k&1) c=c*a;
a=a*a;
}
return c;
}
int main(int argc, const char * argv[]) {
int T,n;
ll f1,f2,a,b,c;
scanf("%d",&T);
while(T--){
scanf("%lld%lld%lld%lld%lld%d",&f1,&f2,&a,&b,&c,&n);
n--;
Matrix left;
left.matrix[0][0]=b;
left.matrix[0][1]=a;
left.matrix[0][2]=c;
left.matrix[1][0]=1;
left.matrix[2][2]=1;
left.matrix[1][1]=left.matrix[1][2]=left.matrix[2][0]=left.matrix[2][1]=0;
Matrix res;
res.matrix[0][0]=f2;
res.matrix[1][0]=f1;
res.matrix[2][0]=1;
res=(left^n)*res;
printf("%lld\n",(res.matrix[1][0]+MOD)%MOD);
}
return 0;
}