hdu 5868 矩阵快速幂+burnside引理 +欧拉函数+乘法逆元

Different Circle Permutation 


方法来自官方题解:

https://async.icpc-camp.org/d/546-2016-icpc


题意:

题意:n 个点构成一个环,每个点可以染色为黑色或白色,要求任意两个相邻的点不能都是黑色,问在旋转同构意义下的染色数

题解:

设 f(n)f(n) 为不考虑旋转同构时给 n 个点的环染色的方案数,显然有递推式 f(n) = f(n-1) + f(n - 2)f(n)=f(n1)+f(n2)这个可以靠矩阵来O(\log n)O(logn)求一次 f(n)f(n)。(即矩阵快速幂求解

考虑旋转则根据 burnside 引理有 F(n) = \frac{1}{n}\sum_{i=1}^{n}f(\gcd(i , n))F(n)=n1i=1nf(gcd(i,n))

即 F(n) = \frac{1}{n}\sum_{d|n}{f(d) \varphi(\frac{n}{d})}F(n)=n1dnf(d)φ(dn),枚举 dd 运算即可,复杂度为O(\sqrt{n}\log n)O(nlogn)

其中,“枚举d”就是枚举n的所有约数,枚举的方法。。哎,太弱了。比如求n的约数:

 for(int i=1;i*i<=n;i++)
        if(n%i==0){
            
            p[pCnt++]=i;
            if(i*i!=n) p[pCnt++]=n/i;
        }

sqrt(n)的时间复杂度。


注意还要特判 

n=1n=1 的情况,因为题意要求是”任意两人”,所以一个人坐在单独的一个座位上仍然是合法的。

最后,还有个很重要的地方,由于所有的求值都是模 MOD=1000000000+7的,而F(n)的公式中有个 除以n的操作,这涉及到求“除n”的乘法逆元。

又因为1000000000+7是质数,所以“除n”的乘法逆元 等于n^(MOD-2)。这个证明见我的博客:

http://blog.csdn.net/yukizzz/article/details/51105009



last and last,AC代码:

#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define MOD 1000000007
typedef long long ll;

using namespace std;

struct Mat{
    ll mat[2][2];
};

int p[100005];
int pCnt;

Mat operator * (Mat a,Mat b){
    Mat c;
    memset(c.mat,0,sizeof(c.mat));
    
    for(int k=0;k<2;k++)
        for(int i=0;i<2;i++)
            for(int j=0;j<2;j++)
                c.mat[i][j]=(c.mat[i][j]+a.mat[i][k]*b.mat[k][j])%MOD;
    
    return c;
}


Mat operator ^ (Mat a,int k){
    Mat c;
    
    for(int i=0;i<2;i++)
        for(int j=0;j<2;j++)
            c.mat[i][j]=(i==j); //单位矩阵
    
    for(;k>0;k>>=1){
        if(k&1) c=c*a;
        a=a*a;
    }

    return c;
}

//求fibo数列, O(logn)
ll f(int n){
    Mat a;
    a.mat[0][0]=a.mat[0][1]=a.mat[1][0]=1;
    a.mat[1][1]=0;
    
    if(n==1) return 1;
    if(n==2) return 3;
    
    Mat res;
    res.mat[1][0]=1;
    res.mat[0][0]=3;
    
    res=(a^(n-2))*res;
    return res.mat[0][0];
}

//求n的欧拉函数
ll eula(int n){
    
    if(n==1) return 1;
    int ret=n;
    
    for(ll i=2;i*i<=n;i++)
        if(n%i==0){
            ret=ret-ret/i;
            while(n%i==0) n/=i;
        }
    
    if(n!=1) {ret=ret-ret/n;}

    return ret;
}

//求数字n的所有 约数。
void prime(int n){

    pCnt=0;
    memset(p,0,sizeof(p));
    
    for(int i=1;i*i<=n;i++)
        if(n%i==0){
            
            p[pCnt++]=i;
            if(i*i!=n) p[pCnt++]=n/i;
        }

}

//考虑旋转同构的结果
ll F(int n){
    ll ret=0;
    
    prime(n);
    sort(p,p+pCnt);
    
    for(ll i=0;i<pCnt;i++)
        ret=ret=(ret+( f(p[i])*eula(n/p[i]) ))%MOD;

    return ret;
}

ll pow_quick(ll n ,ll k){
    ll ret=1;
    
    for(;k>0;k>>=1){
        
        if(k&1) ret=(ret*n)%MOD;
        n=(n*n)% MOD;
    }
    //printf("pow_quick=%lld\n",ret);
    return ret;
}


int main(int argc, const char * argv[]) {
   
    int n;
    
    while(~scanf("%d",&n)){
        
        //printf("fn=%lld\n",f(n));
        //printf("eula= %d\n",eula(n));
        
        if(n==1) {puts("2");continue;}
        
        ll ans=F(n);
        //printf("ans = %lld ",ans);
        ans= ans*pow_quick(n,MOD-2)%MOD;
        printf("%lld\n",(ans+MOD)%MOD);
    }
    
    
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值