南航数据分析与挖掘课设1(上)——基于多元线性回归模型,ARIMA序列的中国GDP增长影响因素研究及预测(R语言)

基于多元线性回归模型,ARIMA序列的中国GDP增长影响因素研究及预测

摘要

在国民经济发展的过程中,国内生产总值(GDP)是指按国家市场价格计算的一个国家(或地区)所有常驻单位在一定时期内生产活动的最终成果,常被公认为是衡量国家经济状况的最佳指标。国内生产总值GDP是核算体系中一个重要的综合性统计指标,也是我国新国民经济核算体系中的核心指标,它反映了一国(或地区)的经济实力和市场规模。目前,我国正处于经济发展新常态的关键阶段,前期结构调整留下后遗症仍待解决,各方面经济发展的压力不可小觑。因此本文
使用了国家数据统计局官网给出的相关经济数据,对GDP影响因素建立了多元线性回归模型来进行研究,并且采用ARIMA序列进行预测,经过研究发现:前人所作的采用多元线性回归模型研究GDP影响因素存在多重共线性问题,本文也对此进行了处理,使得本文的结论更具有可靠性和有效性。此方法可为相应的决策部门提供科学依据。

关键词:多元线性回归模型,ARIMA序列,多重共线性,GDP,R语言

Based on multiple linear regression model, Arima series of China’s GDP growth factors research and forecast

Abstract

In the process of national economic development, gross domestic product (GDP) refers to the final results of production activities of all resident units of a country (or region) in a certain period of time, which is often recognized as the best indicator to measure the state of national economy. GDP is an important comprehensive statistical index in the accounting system, and it is also the core index in the new national economic accounting system of China. It reflects the economic strength and market scale of a country (or region). At present, China is in the key stage of the new normal of economic development, and the sequelae of early structural adjustment remains to be solved, and the pressure of economic development in all aspects can not be underestimated. So this paper
Using the relevant economic data from the official website of the National Bureau of data and statistics, this paper establishes a multiple linear regression model to study the influencing factors of GDP, and uses Arima series to predict. Through the research, it is found that there is a multicollinearity problem in the research on the influencing factors of GDP by using the multiple linear regression model, which is also dealt with in this paper, which makes the conclusion of this paper more accurate It is reliable and effective. This method can provide scientific basis for the corresponding decision-making departments.

Keywords: Multiple linear regression model, Arima series, multicollinearity, GDP, R.

一、问题简介
现在有2000-2019的国内生产总值(亿元),居民消费水平(元),年末总人口(万人),能源消费总量(万吨标准煤)等数据,需要我们建立多元线性回归模型,使得建立模型的AIC统计量最小,并且2000-2024这5年的GDP进行预测。
问题背景:针对GDP的影响因素的研究,可以让相关部门了解影响GDP的因素有哪些,以及他们对GDP影响的权重的多少,便于有关单位在决策,计划时,考虑到其决策,计划对上述因素的影响,从而考虑到对GDP的影响,那么就可以指导,引领其做出更加科学,完备的决策。

二、使用方法及其分析
2.1.理论方法
2.1.1.总体思路
通过查阅相关文献,发现大多数国内外学者认为国内生产总值(GDP)和居民消费水平(元),年末总人口(万人),能源消费总量(万吨标准煤),出口总额(人民币)(亿元),进口总额(人民币)(亿元),进出口差额(人民币)(亿元),国民总收入(亿元)这8个因素有关,当然这8个因素之间存在多重共线性问题的问题,这将在3.4节进行处理,我会对这8个因素采用逐步回归法,来寻找相应的自变量,使得相应的回归模型的AIC统计量的值最小,并且会给出国内生产总值(GDP)的真实值、拟合值及95%置信带
接着我会采用R全子集回归来选取相应的相关因素(用leaps包中的regsubsets()函数实现),并且比较该方法和逐步回归选取变量是否相同,如果不同,便分析不同的原因,我将从R全子集回归的本质入手,讲解R全子集回归的算法内涵来解释。
最后我会采用方差扩大因子法来进行多重共线性的诊断(R软件car包vif()函数),然后确定去掉的存在多重共线性的因素,然后将上述方法再次进行一边,得到更好的结果。
到这里中国GDP增长影响因素研究可以说是完成了,但是如果仅仅完成了这些内容,未免有些单薄,因此我会采用ARIMA序列和灰色模型GM(1,1)模型对国内生产总值(GDP)进行预测,并且比较此时ARIMA序列和灰色模型GM(1,1)模型的预测优劣。
2.1.2.逐步回归法
逐步回归的基本思想是有进有出。R中step()函数的具体做法是在给定了包含p个变量的初始模型后,计算初始模型的AIC值,并在此模型基础上分别剔除p个变量中的任一个和添加剩余m-p个变量中的任一变量后的AIC值,然后选择最小的AIC值决定是否添加新变量或剔除已存在初始模型中的变量。如此反复进行,直至既不添加新变量也不剔除模型中已有的变量时所对应的AIC值最小,即可停止计算,并返回最终结果。
逐步回归法的基本步骤是依次拟合一系列回归方程,后一个回归方程是在前一个的基础上增加或删除一个自变量,其增加或删除某个自变量的准则是用残差平方和的相对增加或减少量来衡量。 在这里插入图片描述
2.1.2.R全子集回归法
检验所有可能的模型分析员可选择所有可能的结果,也可以选择展示N个不同子集大小的最佳模型。例如nbest=2 ,先展示两个最佳的单预测变量模型,然后展示两个最佳的双预测变量模型,以此类推,直到包含所有的预测变量。
方法:
leaps 包 中的 regsubsets()函数,之后可以通过R平方(越大越好),调整的R平方(越大越好),或Mallows Cp统计量准测(Cp统计量越接近于模型的参数数目越好)来选择最佳模型。
2.1.3.方差扩大因子法
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2.2.相关统计学名词介绍
2.2.1.AIC统计量
AIC准则是日本统计学家赤池(Akaike)1974年根据极大似然估计原理提出的一种较为一般的模型选择准则,人们称它为Akaike信息量准则 (Akaike Information Criterion,简记为AIC)。AIC准则既可用来作回归方程自变量的选择,又可用于时间序列分析中自回归模型的定阶上。
在这里插入图片描述
2.2.2.置信带
置信带是概率图或拟合线图上的直线,表示位于数据范围内的拟合线上所有点的置信上限和下限。在拟合线图上,指定预测变量值的响应均值的置信区间是紧邻其上或其下的置信带上的点。
2.3.相关经济学名词介绍
2.3.1.国内生产总值(GDP)
DP是按市场价格计算的一个国家(或地区)所有常住单位在一定时期内生产活动的最终成果。国内生产总值有三种表现形态,即价值形态、收入形态和产品形态。从价值形态看,它是所有常住单位在一定时期内生产的全部货物和服务价值超过同期投入的全部非固定资产货物和服务价值的差额,即所有常住单位的增加值之和;从收入形态看,它是所有常住单位在一定时期内创造并分配给常住单位和非常住单位的初次收入之和;从产品形态看,它是所有常住单位在一定时期内所出产的最终使用的货物和服务价值减去货物和服务进口价值。在实际核算中࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值