【NOIP1999普及组】Cantor表

这篇博客探讨了数学家Georg Cantor如何证明有理数是可以被枚举的,并通过一个Z字形排列的表格展示这一过程。给出的代码实现了一个算法,用于根据输入的整数N找到该表中的第N项有理数。示例展示了当N为7时,输出的分数为1/4。
摘要由CSDN通过智能技术生成

题目描述

现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的。他是用下面这一张表来证明这一命题的:

我们以Z字形给上表的每一项编号。第一项是1/1,然后是1/2,2/1,3/1,2/2,…

给定N,求第N项。

输入

一个整数N(1≤N≤10000000)。

输出

一个分数,即表中的第N项。

样例输入

7

样例输出

1/4

代码

#include<bits/stdc++.h>
using namespace std;
int main() {
    int a=1,s=1,n;cin>>n;
    while(s+a<n){a+=1;s+=a;}n-=s;
    if(n){a++;}else{n=a;}
    if(a%2!=0){cout<<a+1-n<<"/"<<n;}
    else{cout<<n<<"/"<<a+1-n;}
    return 0;}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值