选股公式函数汇总解释

本文汇总了用于选股的公式和函数,涵盖引用数据、金融统计、数理统计、逻辑判断、数学运算、时间函数及绘图等多个方面,旨在帮助投资者理解和应用这些工具进行有效的股票筛选。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.引用数据
AVPRICE 引用均价(在盘后对于国内三个期货交易所指结算价)
CLOSE 引用收盘价(在盘中指最新价)
HIGH 引用最高价
LOW 引用最低价
OPEN 引用开盘价
OPI 引用持仓量
REF(X,N) 引用X在N个周期前的值
例:REF(CLOSE,5);表示引用当前周期前第5个周期的收盘价
REFX(X,N) 引用N个周期后的数据。(N为大于等于1的整数)(未来函数)
例:REFX(CLOSE,5);表示引用自当前周期后第5个周期的收盘价
SETTLE 引用结算价(只有盘后才能引用当日的结算价)
VOL 引用成交量

2.金融统计

BACKSET(X,N)
若X非0,则将当前位置到N周期前的数值设为1。
例:BACKSET(CLOSE>OPEN,3);表示当K线收阳时,自当前位置到3周期前的数值设为1
BARSLAST(X) 求上一次条件成立到当前的周期数。
COUNT(X,N) 表示统计在N周期内满足X条件的周期数。如果N为0则表示从第一天开始算起。
例:WR:=-100*(HHV(HIGH,N)-CLOSE)/(HHV(HIGH,N)-LLV(LOW,N)); COUNT(WR>80,5);表示统计在5个周期内满足WR>80的次数
DMA(X,A) 返回X的动态移动平均,其中A必须介于0及1之间。
计算方法:DMA(N)=DMA(N-1)*(1-A)+X(N)*A 其中DMA(N-1)为第(N-1)天的DMA值
EMA(X,N) 表示求X在N周期内的平滑移动平均。(指数加权)
计算方法:EMA(X,N)=[2*X+(N-1)*EMA(N-1)]/(N+1) 其中EMA(N-1)为第(N-1)天的EMA值
EMA2(X,N) 表示求X在N周期内的加权平均。(线性加权)
计算方法:EMA2(N)=(N*X0+(N-1)*X1+(N-2)*X2+...+1*XN)/(N+(N-1)+(N-2)+...+1),X0表示本周期值,X1表示上一周期值...
HHV(X,N) 得到X在N周期内的最高值,如果N=0,则从第一个有效周期开始算起。
例:HHV(HIGH,13);求13个周期内的最高价的最大值。
HHVBARS(X,N) 得到X在N周期内的最高值位置到当前的周期数。如果N=0,则从第一个有效周期开始算起。
例:HHVBARS(VOL,0); 求历史成交量最大的周期到当前的周期数
LLV(X,N) 得到X在N周期内的最小值,如果N=0,则从第一个有效周期开始算起。
例:LLV(LOW,25);表示求25个周期内最低价的最小值
LLVBARS(X,N)
### 稳定性因子的定义与计算 稳定性因子通常用于衡量系统的稳定程度,在金融网络中可以表示为金融机构间的相互依赖关系及其对外部冲击的抵抗能力。虽然具体公式可能因应用场景而异,但在一般情况下,可以通过以下方式定义和计算: #### 1. **数学定义** 稳定性因子 \( S \) 可以通过网络连通性和鲁棒性的综合指标来描述。假设网络中的节点数为 \( N \),边权重矩阵为 \( W_{ij} \),则稳定性因子可以用以下形式表达: \[ S = \frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} w_{ij} \] 其中,\( w_{ij} \) 表示节点 \( i \) 和节点 \( j \) 的连接强度[^1]。 此公式的核心在于量化整个网络的连通性,较高的 \( S \) 值意味着更强的内部联系和更高的抗风险能力。 --- #### 2. **基于 Alpha 因子的扩展应用** 在金融市场研究中,稳定性因子也可以作为一种特殊的 Alpha 因子进行建模。例如,在实验设计中提到的 CSI300、CSI500 等指数成分股的研究表明,稳定性因子可通过历史价格波动率和交易量变化共同决定[^3]。其计算过程涉及以下几个步骤: - 使用开盘价 (\( O_t \))、收盘价 (\( C_t \))、最高价 (\( H_t \))、最低价 (\( L_t \)) 数据构建每日收益率序列。 - 对每只股票的日收益序列计算滚动窗口内的标准差 \( \sigma_i(t) \)。 - 将所有个股的标准差汇总形成整体市场的波动水平 \( V_m(t) \)。 - 结合成交量加权平均价 (VWAP) 调整后的数据,最终得到稳定性因子 \( F_s(t) \): \[ F_s(t) = \alpha_1 \cdot \log(V_m(t)) + \alpha_2 \cdot VWAP(t) \] 此处,\( \alpha_1 \) 和 \( \alpha_2 \) 是待估计的参数,需通过对训练集的历史数据拟合得出。 --- #### 3. **强化学习视角下的策略梯度关联** 如果从强化学习的角度出发,稳定性因子还可以视为一种状态变量,影响代理决策的质量。在这种场景下,策略梯度算法的目标函数会间接反映系统稳定性的影响。更新规则如下所示: ```python def policy_gradient_update(theta, rewards, actions): gradient = np.zeros_like(theta) for t in range(len(rewards)): advantage = compute_advantage(rewards[t:]) log_prob = compute_log_probability(actions[t], theta) gradient += advantage * log_prob new_theta = theta + learning_rate * gradient return new_theta ``` 上述代码片段展示了如何利用策略梯度方法优化参数 \( \theta \)[^4]。在此过程中,稳定性因子的作用体现在优势函数(Advantage Function)的设计上,从而引导更稳健的行为模式。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值