- 博客(123)
- 资源 (1)
- 收藏
- 关注
原创 SaltStack管理10个服务节点的安装部署架构
将上述PlantUML代码复制到支持PlantUML的在线工具或软件中,即可生成对应的时序图。根据实际需求,你还可以对架构、配置和图进行进一步的优化和完善。
2025-04-28 11:44:58
787
原创 一些可用于监控服务器响应时间稳定性的工具
这些工具可结合使用(如通过Prometheus采集数据,Grafana可视化,Alertmanager报警),实现从基础设施到应用层的全链路响应时间稳定性监控。
2025-04-27 14:45:49
499
原创 蓝绿部署的详细规划文档
蓝绿部署是一种通过运行两套完全相同的生产环境(蓝色和绿色)实现零停机发布的策略。核心流程为:在绿色环境部署新版本并验证通过后,将流量逐步切换至绿色环境,若出现问题可快速回滚至蓝色环境。该策略适用于对可用性要求极高的系统(如金融、电商),可降低发布风险并支持快速迭代。蓝绿部署通过冗余环境和流量切换机制,显著降低了发布风险,尤其适用于高可用性系统。结合自动化工具(如Flagger、Jenkins)和监控体系(Prometheus+Grafana),可实现高效、安全的持续交付。
2025-04-27 14:38:08
460
原创 混沌工程领域常用工具的对比分析
混沌工程工具的选择需结合架构(单体/微服务/K8s)、平台(云/本地)、故障注入维度(基础设施/网络/应用层)及团队资源。开源工具适合技术探索和中小规模场景,企业级工具则在功能完整性、支持服务和多云适配上更具优势。建议从核心场景(如网络韧性、资源耗尽)入手,逐步扩展实验复杂度,并通过观测工具闭环验证系统容错能力。
2025-04-27 14:14:22
437
原创 密钥管理系统(KMS)详细说明书
密钥生成和管理系统(Key Management System, KMS)是一套用于安全生成、存储、分发、轮换和销毁密钥的全生命周期管理平台,支持对称密钥(如AES)、非对称密钥(如RSA/ECC)及哈希密钥(如HMAC),满足企业级、金融级、政务级等场景的密钥安全需求,符合等保三级、PCI-DSS、ISO 27001等合规标准。:本系统通过“生成-存储-分发-轮换-销毁-审计”的全链路管控,结合硬件安全、加密算法和权限策略,为企业提供了可落地的密钥安全解决方案。
2025-04-26 14:38:25
970
原创 Prometheus、Zabbix 和 Nagios 这三个工具的对100个节点的部署设计的信息流
Nagios主要由Nagios Core、Nagios Plugins、NRPE(Nagios Remote Plugin Executor)、Web界面等组件构成。Prometheus主要由Prometheus Server、Exporter、Alertmanager和Grafana(可选)等组件构成。Zabbix主要由Zabbix Server、Zabbix Agent、Zabbix Proxy(可选)、数据库和Web界面等组件构成。
2025-04-26 13:43:18
884
原创 Jenkins 拉取代码到动态 Agent Pod 并调用 Docker 构建镜像
通过以上流程,Jenkins 能够在动态创建的 Agent Pod 中安全高效地完成代码构建、镜像打包和推送,最终实现与 Kubernetes 集群的无缝集成。Jenkins 拉取代码到动态 Agent Pod 并调用 Docker 构建镜像的详细过程说明,涵盖技术实现、关键配置和底层交互逻辑。发送构建指令(git clone、docker build)通过挂载的Socket调用docker build。docker push(使用注入的凭证)请求创建Agent Pod。
2025-04-26 13:15:40
1024
原创 基于Docker、Kubernetes和Jenkins的百节点部署架构图及信息流描述
此架构通过清晰的职责划分和自动化流水线,实现从代码到生产的快速交付,同时保障百节点集群的稳定性和可观测性。私有镜像仓库 Harbor。Kubernetes集群。
2025-04-26 13:06:09
953
原创 100个节点的部署,整合Docker、Kubernetes和Jenkins的详细设计
通过以上设计,可实现高效、稳定的百节点容器化部署,结合自动化CI/CD和健全的运维体系,显著提升交付速度与系统可靠性。
2025-04-26 12:56:46
1408
原创 Redis LFU 策略参数配置指南
热点数据缓存 lfu-log-factor=10 lfu-decay-time=1 默认配置,平衡高频键保留与旧数据淘汰效率。历史数据长期保留 lfu-decay-time=30 降低衰减频率,保留历史高频访问但近期未活跃的数据(如日志分析场景)。高并发场景(如瞬时访问激增):增大该值(如 20),避免短期高频访问导致计数器膨胀过快。数据访问模式稳定:增大该值(如 10),减少衰减频率,保留长期高频键。需要快速淘汰旧数据:减小该值(如 0.5),加速低频键的淘汰。场景 推荐配置 说明。
2025-04-24 14:10:48
445
原创 Redis的LFU策略具体怎么工作?
通过以上机制,Redis的LFU在有限内存和计算开销下,实现了对高频访问键的高效保留,同时避免传统LFU算法的内存与性能瓶颈。
2025-04-24 14:05:44
312
原创 Redis Cluster 使用 CRC16 算法实现 Slot 槽位分片的核心细节
当键名包含 {} 时(如 {order}123),仅对 {} 内的内容(即 “order”)执行 CRC16 计算,忽略其他部分。将校验值 对 16384 取模(公式:slot = CRC16(key) % 16384),得到 0-16383 的槽位编号。Redis 使用的 CRC16 算法为 CRC16-CCITT 变种,多项式为 0x1021(但官方未明确说明具体标准)。新增节点时,槽位重新分配会导致 部分键的槽位计算结果变化,触发数据迁移。对键值(Key)执行 CRC16 算法,
2025-04-24 14:03:21
460
原创 Redis LRU策略深度解析
高并发场景增大采样池:maxmemory-samples 20。通过双向链表维护访问顺序(新访问的键移动到链表头部)每次读写操作更新键的访问时间戳(8字节空间开销)当内存使用达到maxmemory阈值时自动激活。链表维护带来额外内存消耗(约5%内存开销)随机采样5个键进行淘汰(默认采样数可调)时间局部性表现优异(适合突发流量场景)实现复杂度低于LFU(无频率计算开销)无法识别周期性冷数据(如每月报表数据)优先淘汰最久未被访问的键值数据。30分钟内未活跃会话自动淘汰。突发流量场景配合本地缓存使用。
2025-04-24 13:56:27
313
原创 电商热点数据哈希槽分片案例:双11秒杀场景设计
单商品热点压力:爆款商品(如iPhone 15)瞬时并发量达30万QPS,单一Redis节点无法承载;采用Redis Cluster部署,初始配置10主节点,每个节点管理1638个槽位(16384/10);新增10节点后,通过CLUSTER ADDSLOTS将原节点20%的槽位迁移到新节点;动态扩容需求:需在1小时内完成集群从10节点扩展到20节点的平滑扩容。槽位预分配:提前将热门商品相关槽位均匀分配到所有主节点。读写分离:从节点承载库存查询流量,主节点专注库存扣减;二、解决方案:哈希槽分片设计。
2025-04-24 13:51:11
373
原创 Redis热点数据优化方案
一、动态识别与分级存储// 热点探测核心逻辑(Java示例).build();});冷热分离存储:数据类型 内存策略 存储实例热数据 16GB内存+volatile-lru 高性能节点冷数据 64GB内存+volatile-ttl 大容量节点二、缓存架构优化graph LRA[客户端] --> B[本地缓存(Guava/Caffeine)]B -->|未命中| C[Redis热数据集群]C -->|穿透防护| D[BloomFilter]
2025-04-24 10:19:28
902
原创 电商Redis热点数据缓存实施规划
一、热点数据定义与识别体系二、缓存架构设计多级缓存结构mermaidgraph TDA[客户端] -->|首次请求| B(本地缓存)B -->|未命中| C(Redis集群)C -->|未命中| D(MySQL分库)D -->|回写| CC -->|热点标记| B:ml-citation{ref=“5,8” data=“citationList”}分片存储策略库存数据分片。
2025-04-24 10:16:04
921
原创 Redis Slot 槽位分片具体案例
当执行 SET {kaigejava}k1 v1 时,Redis 会提取 {} 内的有效部分 kaigejava,通过 CRC16 算法计算哈希值,再对 16384 取余得到槽位。若键为 num(无 {}),则直接对整个键计算哈希值,例如结果为 2765,则分配到对应槽位的节点。例如,键 user:1001 计算后分配到槽位 8000,则由 Node2 负责存储。此时,所有键根据哈希计算分配到对应槽位范围的节点上,实现数据分片存储。当新增节点 Node4 时,集群会重新分配槽位。
2025-04-24 10:07:23
398
原创 Redis分片方案对比
对键进行哈希运算(如MD5、CRC16),再将结果对节点数N取模:hash(key) % N,计算结果决定数据存储节点。扩容成本高:节点数N变化时,需重新计算所有键的映射关系,导致约75%的数据迁移(如3节点扩容至4节点)动态扩容友好:新增节点仅影响相邻数据段,迁移量降低至约1/N(N为节点数)槽位迁移:节点增减时仅需迁移受影响槽位的数据,迁移粒度精细。虚拟节点:每个物理节点对应多个虚拟节点,缓解数据倾斜问题。高效扩容:槽位迁移仅影响局部数据,迁移量远低于哈希取模。
2025-04-24 09:55:52
175
原创 Redis连接池参数配置指南
maxTotal = \frac{QPS \times 平均响应时间(ms)}{1000} + 冗余系数(3-5)示例:QPS=3000,平均响应时间=1.5msmaxTotal = (3000×1.5)/1000 +5 = 9.5 ≈10三、典型场景配置场景类型 参数组合示例 特殊配置高并发读写 maxTotal=200, maxWaitMillis=50ms testWhileIdle=true低频批量任务 maxTotal=30, maxWaitMillis=2000ms timeBet
2025-04-24 09:45:18
481
原创 2025年Redis分片存储性能优化指南
禁用大Key(如单Value>10KB),使用Hash结构存储对象属性(如hmset user:1001 name “Alice” age 30),降低内存碎片率。总结:通过动态分片、智能路由、原子操作与异步容灾机制,结合内存优化与自动化监控,可显著提升Redis分片存储性能,适用于电商高并发、秒杀等典型场景。跨分片库存扣减时,使用Lua脚本封装多节点操作,确保“检查库存→扣减→返回结果”的原子性,防止超卖。,例如从16节点扩容至32节点时,触发槽位重分配以减少数据倾斜。对高频访问数据(如秒杀库存),
2025-04-24 09:32:46
583
原创 Redis分片存储实现细节
总结:该方案通过动态哈希分片、智能路由、跨节点合并扣减等机制实现高并发场景下的分片存储,结合异步落库和集群容灾保障数据可靠性,适用于电商库存、热点商品等典型场景。轮询选择节点:通过product_stock_count:{skuId}记录商品购买次数,以购买次数 % 分片数轮询选择Redis节点,避免单节点过载。动态扩缩容:槽位总数(total_shards)随节点增减动态调整,新增节点时触发槽位重分配(例如从16节点扩容至32节点)。逻辑说明:优先扣减当前节点库存,不足时触发跨节点合并操作。
2025-04-24 09:22:16
1135
原创 2025年电商Redis热点数据缓存规划方案
分片存储:按商品ID哈希分片,轮询选择Redis节点,通过product_stock_count:{skuId}记录分片访问频次。总结:该方案通过动态识别、分层存储、容灾熔断等机制,实现电商场景下热点数据的高效缓存与稳定性保障,需结合实时监控持续调优。本地缓存+Redis:高频访问数据(如库存)优先存储于Redis,结合本地缓存(如Guava)减少网络延迟。双写策略:核心数据(如商品详情)采用Redis与MySQL双写,通过版本号控制冲突。
2025-04-24 09:18:17
321
原创 电商系统分库分表详细规划方案
订单库:拆分为订单主表(订单ID、金额、状态)和订单详情表(物流信息、商品快照),通过order_id关联。订单表:按user_id % 64分16库(每库4表),支持用户维度的订单聚合查询。商品表:按category_id分8库,热门类目单独分库(如3C类目独立3个库)商品库:按类目拆分高频访问类目(如3C/服饰)独立分库,历史商品归档至冷库。商品ID:Redis自增ID,按类目分配不同号段(如3C类目ID以1亿起始)购物车表:按user_id分片,与订单库同分片规则减少跨库事务。
2025-04-23 17:52:03
371
原创 电商平台数据采集与 QPS 计算全流程解析
通过电商平台开放的 API 直接获取实时交易、订单、用户行为等数据,支持高效、合法采集。关联指标:若系统并发数为 500,平均响应时间 0.5 秒,则理论 QPS = 500 / 0.5 = 1,000。例如:10 分钟内采集到 6,000 次商品浏览请求,则 QPS = 6,000 / 600 = 10。按业务类型分类统计请求量(如商品浏览、下单、支付),为分项 QPS 计算提供基础。示例:商品浏览请求量通过爬虫或 API 获取,支付请求量通过订单日志统计。风险提示:需遵守平台规则,避免 IP 封禁。
2025-04-22 13:32:02
1029
原创 电商场景下Elasticsearch集群与分片(Sharding)的ELK安装配置指南
输出到Elasticsearch:按电商业务分索引(如orders-2025.04、access_logs)。分片数(Shards):按日均日志量预估(如单索引每日100GB,建议分片数=数据节点数×1.5)。数据节点(Data):根据数据规模横向扩展,电商场景建议每节点配置独立磁盘。副本数(Replicas):至少1,确保高可用(电商订单类数据可设为2)。Grok正则匹配:解析电商特有字段(如用户ID、订单号、响应时间)。内存:单节点至少8GB(建议16GB+),电商高并发需预留更高内存。
2025-04-22 13:29:12
666
原创 ProxySQL 性能调优工具推荐
优先通过 stats_mysql_query_digest 识别 TOP 慢查询,结合 EverSQL 或 pt-query-digest 优化 SQL。工具包:包含 pt-kill(终止长事务)、pt-index-usage(索引使用率分析),减少 ProxySQL 连接阻塞。通过自定义模板监控 ProxySQL 的 stats_mysql_global 数据,设置阈值告警(如连接池耗尽)。支持动态调整规则,例如通过 mysql_query_rules 表优化路由策略。
2025-04-22 13:25:43
277
原创 ProxySQL性能调优案例
场景:某HTAP数据库(TiDB)中,OLTP事务查询与OLAP分析查询混合导致资源争抢,ProxySQL未隔离两类请求导致TP业务响应延迟。权重分配:为TP(OLTP)和AP(OLAP)请求分配独立连接池,TP池连接数占比70%,AP池限流30%,避免AP突发流量挤压TP资源。场景:某电商平台分表后(如order_001到order_100),应用层未适配分表逻辑,导致全表扫描查询性能骤降。场景:在线教育系统因连接池过载(连接数达5000+),大量空闲连接占用内存,且慢查询未及时终止导致雪崩。
2025-04-22 13:23:00
392
原创 ProxySQL 性能调优实战案例
读组扩容:新增 2 个从库并加入读组(hostgroup_id=20),权重设置为 150(原从库权重 100),优先分担高流量。快速故障切换:配置 monitor_slave_lag_warning=5(单位:秒),从库延迟超 5 秒自动切换流量。查询缓存启用:对静态配置表(如地区编码)开启结果缓存,设置 cache_ttl=600s,降低 30% 重复查询量。执行时间限制:设置 mysql-max_query_time=10000(单位:ms),超时自动终止查询。
2025-04-22 13:14:44
622
原创 ProxySQL 性能调优工具推荐
优先通过 stats_mysql_query_digest 识别 TOP 慢查询,结合 EverSQL 或 pt-query-digest 优化 SQL。工具包:包含 pt-kill(终止长事务)、pt-index-usage(索引使用率分析),减少 ProxySQL 连接阻塞。通过自定义模板监控 ProxySQL 的 stats_mysql_global 数据,设置阈值告警(如连接池耗尽)。用途:自动解析慢查询日志,提供索引优化与 SQL 重写建议,降低后端数据库负载。
2025-04-22 13:02:05
419
原创 MySQL 性能监控工具的多维度对比分析
MySQL自带的性能分析工具,可追踪线程状态、查询执行详情和锁等待情况,通过查询performance_schema库获取数据(如events_statements_summary_by_digest表)。Prometheus+Grafana 多维度指标采集、历史数据分析、自定义仪表盘 强(Grafana图表库) 支持(Alertmanager) 时序数据库(TSDB)中高消耗:Prometheus(TSDB存储压力)、PMM(VictoriaMetrics占用内存较高)。
2025-04-22 12:56:25
958
原创 日志分析工具快速统计电商系统单位时间内的请求总数
一、常用日志分析工具及操作步骤核心操作日志收集:通过Logstash配置日志输入(如Nginx日志文件),使用grok插件解析日志格式。数据存储:将解析后的日志存入Elasticsearch,利用其分布式搜索能力快速索引数据。可视化统计:在Kibana中创建直方图或聚合查询,筛选指定时间范围(如“过去1小时”),统计request字段的总数。示例命令(Logstash配置)confCopy Code核心操作。
2025-04-22 11:58:21
383
原创 电商平台 QPS 计算方法解析
关键提示:电商平台需根据业务波动动态调整 QPS 容量,如通过分布式架构横向扩展服务器资源,确保高并发场景下的稳定性。例如,系统支持 500 并发用户,平均响应时间为 0.5 秒,则 QPS = 500 / 0.5 = 1,000。例如,某电商平台在 1 分钟内处理 300 个用户请求,则 QPS = 300 / 60 = 5。峰值 QPS = (日总 PV × 80%) / (24 × 3600 × 20%)。性能验证:通过压力测试工具模拟并发请求,验证系统实际 QPS 是否达标。
2025-04-22 11:54:24
335
原创 1000 QPS 下 MySQL 性能瓶颈解决方案
通过慢查询日志定位高频低效 SQL,使用 EXPLAIN 分析执行计划,针对 WHERE、JOIN、ORDER BY 等关键字段创建复合索引。设置 innodb_buffer_pool_size 为物理内存的 70%-80%,提升缓存命中率。索引占用存储空间且降低写入性能,单表索引数建议控制在 5个以内,优先覆盖高频查询场景。调整 innodb_log_file_size 至 1-2GB,减少日志刷盘频率。将机械硬盘升级为 SSD,提升 IOPS(随机读写性能)至 5万+。
2025-04-22 11:50:52
472
原创 1000-3000 QPS 的具体含义
在电商场景中,1000-3000 QPS 指系统每秒能处理 1000至3000次 的查询或操作请求,属于中小型电商平台的典型性能标准。1000-3000 QPS 是中小型电商系统性能达标的基准线,需通过 缓存优化(如Redis)、数据库分库分表、异步处理 等技术保障稳定性和扩展性。响应时间(RT):需控制在 5ms以内(简单请求)至 20ms以内(复杂查询)。3000 QPS:适用于 百万级商品库 或 日均数十万订单 的业务场景。
2025-04-22 11:46:49
335
原创 ProxySQL 的性能优化需结合实时监控数据与动态配置调整
启用 MySQL 慢查询日志(slow_query_log=ON),结合 ProxySQL 的 stats_mysql_query_digest 表。监控内容包括连接状态、主从延迟(max_replication_lag)及心跳检测(mysql-monitor_ping_interval)。(mysql-shun_recovery_time_seconds=60),异常节点恢复后自动重新接入流量。
2025-04-22 11:42:20
432
原创 ProxySQL如何支持高并发读写请求
根据 SQL 类型自动路由:写操作(如 INSERT)定向至主库,读操作(如 SELECT)通过加权轮询(Weighted Round Robin)分发到多个从库。对静态数据(如商品分类表)启用结果缓存(mysql_query_cache),缓存命中时直接返回结果,减少数据库访问次数。按从库硬件性能分配权重(如主库权重 100,高性能从库权重 80,普通从库权重 50),优先使用高配置节点处理关键请求。设置流量阈值(如每秒最大查询数 max_qps=5000),超过阈值时自动拒绝新请求,防止数据库过载。
2025-04-22 11:30:42
435
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人