【pandas 类库】

Pandas是Python的扩展库,用于高效的数据分析和处理。它包含Series和DataFrame两种核心数据结构,支持从多种文件格式导入数据,并提供数据清洗、转换等功能。Series是一维数组,而DataFrame是二维表格型数据结构,广泛应用于各领域的数据分析。
摘要由CSDN通过智能技术生成

Pandas 是 Python 语言的一个扩展程序库,用于数据分析。

Pandas 是一个开放源码、BSD 许可的库,提供高性能、易于使用的数据结构和数据分析工具。

Pandas 名字衍生自术语 "panel data"(面板数据)和 "Python data analysis"(Python 数据分析)。

Pandas 一个强大的分析结构化数据的工具集,基础是 Numpy(提供高性能的矩阵运算)。

Pandas 可以从各种文件格式比如 CSV、JSON、SQL、Microsoft Excel 导入数据。

Pandas 可以对各种数据进行运算操作,比如归并、再成形、选择,还有数据清洗和数据加工特征。

Pandas 广泛应用在学术、金融、统计学等各个数据分析领域。

使用python进行数据分析时,经常会用Pandas类库处理数据,将数据转换成我们需要的格式。Pandas中的有两个数据结构和处理数据相关,分别是Series和DataFrame。

Pandas 数据结构 - Series

Pandas Series 类似表格中的一个列(column),类似于一维数组,可以保存任何数据类型。

Series 由索引(index)和列组成,函数如下:

pandas.Series( data, index, dtype, name, copy)

参数说明:

Pandas一个Python的核心数据分析库,它提供了快速、灵活、明确的数据结构,能够简单、直观、快速地处理各种型的数据。Pandas名字来源于术语"panel data"(面板数据)和"Python data analysis"(Python数据分析)。Pandas提供了两个主要的数据结构,分别是Series(一维)和DataFrame(二维)。它们可以处理金融、统计、社会科学、工程等领域里的大多数典型案例。Pandas是基于NumPy开发的,可以与其他第三方科学计算库完美集成。总的来说,Pandas一个功能强大且易于使用的数据分析工具,被广泛应用于各种数据处理和分析任务中。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [【pandas 类库】](https://blog.csdn.net/zhurrm/article/details/121575808)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [Python数据分析与处理---Pandas库介绍](https://blog.csdn.net/VN520/article/details/129120364)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值