day47---数据结构与算法(二)

二. 基础数据结构

2.1 数组

1) 概述

定义

在计算机科学中,数组是由一组元素(值或变量)组成的数据结构,每个元素有至少一个索引或键来标识

In computer science, an array is a data structure consisting of a collection of elements (values or variables), each identified by at least one array index or key

因为数组内的元素是连续存储的,所以数组中元素的地址,可以通过其索引计算出来,例如:

int[] array = {1,2,3,4,5}

知道了数组的数据起始地址 B a s e A d d r e s s BaseAddress BaseAddress,就可以由公式 B a s e A d d r e s s + i ∗ s i z e BaseAddress + i * size BaseAddress+isize 计算出索引 i i i 元素的地址

  • i i i 即索引,在 Java、C 等语言都是从 0 开始
  • s i z e size size 是每个元素占用字节,例如 i n t int int 4 4 4 d o u b l e double double 8 8 8

小测试

byte[] array = {1,2,3,4,5}

已知 array 的数据的起始地址是 0x7138f94c8,那么元素 3 的地址是什么?

答:0x7138f94c8 + 2 * 1 = 0x7138f94ca

空间占用

Java 中数组结构为

  • 8 字节 markword
  • 4 字节 class 指针(压缩 class 指针的情况)
  • 4 字节 数组大小(决定了数组最大容量是 2 32 2^{32} 232
  • 数组元素 + 对齐字节(java 中所有对象大小都是 8 字节的整数倍[^12],不足的要用对齐字节补足)

例如

int[] array = {1, 2, 3, 4, 5};

的大小为 40 个字节,组成如下

8 + 4 + 4 + 5*4 + 4(alignment)

随机访问性能

即根据索引查找元素,时间复杂度是 O ( 1 ) O(1) O(1)

2) 动态数组

java 版本

public class DynamicArray implements Iterable<Integer> {
    private int size = 0; // 逻辑大小
    private int capacity = 8; // 容量
    private int[] array = {};


    /**
     * 向最后位置 [size] 添加元素
     *
     * @param element 待添加元素
     */
    public void addLast(int element) {
        add(size, element);
    }

    /**
     * 向 [0 .. size] 位置添加元素
     *
     * @param index   索引位置
     * @param element 待添加元素
     */
    public void add(int index, int element) {
        checkAndGrow();

        // 添加逻辑
        if (index >= 0 && index < size) {
            // 向后挪动, 空出待插入位置
            System.arraycopy(array, index,
                    array, index + 1, size - index);
        }
        array[index] = element;
        size++;
    }

    private void checkAndGrow() {
        // 容量检查
        if (size == 0) {
            array = new int[capacity];
        } else if (size == capacity) {
            // 进行扩容, 1.5 1.618 2
            capacity += capacity >> 1;
            int[] newArray = new int[capacity];
            System.arraycopy(array, 0,
                    newArray, 0, size);
            array = newArray;
        }
    }

    /**
     * 从 [0 .. size) 范围删除元素
     *
     * @param index 索引位置
     * @return 被删除元素
     */
    public int remove(int index) { // [0..size)
        int removed = array[index];
        if (index < size - 1) {
            // 向前挪动
            System.arraycopy(array, index + 1,
                    array, index, size - index - 1);
        }
        size--;
        return removed;
    }


    /**
     * 查询元素
     *
     * @param index 索引位置, 在 [0..size) 区间内
     * @return 该索引位置的元素
     */
    public int get(int index) {
        return array[index];
    }

    /**
     * 遍历方法1
     *
     * @param consumer 遍历要执行的操作, 入参: 每个元素
     */
    public void foreach(Consumer<Integer> consumer) {
        for (int i = 0; i < size; i++) {
            // 提供 array[i]
            // 返回 void
            consumer.accept(array[i]);
        }
    }

    /**
     * 遍历方法2 - 迭代器遍历
     */
    @Override
    public Iterator<Integer> iterator() {
        return new Iterator<Integer>() {
            int i = 0;

            @Override
            public boolean hasNext() { // 有没有下一个元素
                return i < size;
            }

            @Override
            public Integer next() { // 返回当前元素,并移动到下一个元素
                return array[i++];
            }
        };
    }

    /**
     * 遍历方法3 - stream 遍历
     *
     * @return stream 流
     */
    public IntStream stream() {
        return IntStream.of(Arrays.copyOfRange(array, 0, size));
    }
}
  • 这些方法实现,都简化了 index 的有效性判断,假设输入的 index 都是合法的

插入或删除性能

头部位置,时间复杂度是 O ( n ) O(n) O(n)

中间位置,时间复杂度是 O ( n ) O(n) O(n)

尾部位置,时间复杂度是 O ( 1 ) O(1) O(1)(均摊来说)

3) 二维数组

int[][] array = {
    {11, 12, 13, 14, 15},
    {21, 22, 23, 24, 25},
    {31, 32, 33, 34, 35},
};

内存图如下

在这里插入图片描述

  • 二维数组占 32 个字节,其中 array[0],array[1],array[2] 三个元素分别保存了指向三个一维数组的引用

  • 三个一维数组各占 40 个字节

  • 它们在内层布局上是连续

更一般的,对一个二维数组 A r r a y [ m ] [ n ] Array[m][n] Array[m][n]

  • m m m 是外层数组的长度,可以看作 row 行
  • n n n 是内层数组的长度,可以看作 column 列
  • 当访问 A r r a y [ i ] [ j ] Array[i][j] Array[i][j] 0 ≤ i < m , 0 ≤ j < n 0\leq i \lt m, 0\leq j \lt n 0i<m,0j<n时,就相当于
    • 先找到第 i i i 个内层数组(行)
    • 再找到此内层数组中第 j j j 个元素(列)

小测试

Java 环境下(不考虑类指针和引用压缩,此为默认情况),有下面的二维数组

byte[][] array = {
    {11, 12, 13, 14, 15},
    {21, 22, 23, 24, 25},
    {31, 32, 33, 34, 35},
};

已知 array 对象起始地址是 0x1000,那么 23 这个元素的地址是什么?

答:

  • 起始地址 0x1000
  • 外层数组大小:16字节对象头 + 3元素 * 每个引用4字节 + 4 对齐字节 = 32 = 0x20
  • 第一个内层数组大小:16字节对象头 + 5元素 * 每个byte1字节 + 3 对齐字节 = 24 = 0x18
  • 第二个内层数组,16字节对象头 = 0x10,待查找元素索引为 2
  • 最后结果 = 0x1000 + 0x20 + 0x18 + 0x10 + 2*1 = 0x104a

4) 局部性原理

这里只讨论空间局部性

  • cpu 读取内存(速度慢)数据后,会将其放入高速缓存(速度快)当中,如果后来的计算再用到此数据,在缓存中能读到的话,就不必读内存了
  • 缓存的最小存储单位是缓存行(cache line),一般是 64 bytes,一次读的数据少了不划算啊,因此最少读 64 bytes 填满一个缓存行,因此读入某个数据时也会读取其临近的数据,这就是所谓空间局部性

对效率的影响

比较下面 ij 和 ji 两个方法的执行效率

int rows = 1000000;
int columns = 14;
int[][] a = new int[rows][columns];

StopWatch sw = new StopWatch();
sw.start("ij");
ij(a, rows, columns);
sw.stop();
sw.start("ji");
ji(a, rows, columns);
sw.stop();
System.out.println(sw.prettyPrint());

ij 方法

public static void ij(int[][] a, int rows, int columns) {
    long sum = 0L;
    for (int i = 0; i < rows; i++) {
        for (int j = 0; j < columns; j++) {
            sum += a[i][j];
        }
    }
    System.out.println(sum);
}

ji 方法

public static void ji(int[][] a, int rows, int columns) {
    long sum = 0L;
    for (int j = 0; j < columns; j++) {
        for (int i = 0; i < rows; i++) {
            sum += a[i][j];
        }
    }
    System.out.println(sum);
}

执行结果

0
0
StopWatch '': running time = 96283300 ns
---------------------------------------------
ns         %     Task name
---------------------------------------------
016196200  017%  ij
080087100  083%  ji

可以看到 ij 的效率比 ji 快很多,为什么呢?

  • 缓存是有限的,当新数据来了后,一些旧的缓存行数据就会被覆盖
  • 如果不能充分利用缓存的数据,就会造成效率低下

以 ji 执行为例,第一次内循环要读入 [ 0 , 0 ] [0,0] [0,0] 这条数据,由于局部性原理,读入 [ 0 , 0 ] [0,0] [0,0] 的同时也读入了 [ 0 , 1 ] . . . [ 0 , 13 ] [0,1] ... [0,13] [0,1]...[0,13],如图所示

image-20221104164329026

但很遗憾,第二次内循环要的是 [ 1 , 0 ] [1,0] [1,0] 这条数据,缓存中没有,于是再读入了下图的数据

image-20221104164716282

这显然是一种浪费,因为 [ 0 , 1 ] . . . [ 0 , 13 ] [0,1] ... [0,13] [0,1]...[0,13] 包括 [ 1 , 1 ] . . . [ 1 , 13 ] [1,1] ... [1,13] [1,1]...[1,13] 这些数据虽然读入了缓存,却没有及时用上,而缓存的大小是有限的,等执行到第九次内循环时

image-20221104164947154

缓存的第一行数据已经被新的数据 [ 8 , 0 ] . . . [ 8 , 13 ] [8,0] ... [8,13] [8,0]...[8,13] 覆盖掉了,以后如果再想读,比如 [ 0 , 1 ] [0,1] [0,1],又得到内存去读了

同理可以分析 ij 函数则能充分利用局部性原理加载到的缓存数据

举一反三

  1. I/O 读写时同样可以体现局部性原理

  2. 数组可以充分利用局部性原理,那么链表呢?

    答:链表不行,因为链表的元素并非相邻存储

5) 越界检查

java 中对数组元素的读写都有越界检查,类似于下面的代码

bool is_within_bounds(int index) const        
{ 
    return 0 <= index && index < length(); 
}
  • 代码位置:openjdk\src\hotspot\share\oops\arrayOop.hpp

只不过此检查代码,不需要由程序员自己来调用,JVM 会帮我们调用

习题

E01. 合并有序数组 - 对应 Leetcode 88

将数组内两个区间内的有序元素合并

[1, 5, 6, 2, 4, 10, 11]

可以视作两个有序区间

[1, 5, 6] 和 [2, 4, 10, 11]

合并后,结果仍存储于原有空间

[1, 2, 4, 5, 6, 10, 11]

方法1

递归

  • 每次递归把更小的元素复制到结果数组
merge(left=[1,5,6],right=[2,4,10,11],a2=[]){
    merge(left=[5,6],right=[2,4,10,11],a2=[1]){
        merge(left=[5,6],right=[4,10,11],a2=[1,2]){
            merge(left=[5,6],right=[10,11],a2=[1,2,4]){
                merge(left=[6],right=[10,11],a2=[1,2,4,5]){
                    merge(left=[],right=[10,11],a2=[1,2,4,5,6]){
						// 拷贝10,11
                    }
                }
            }
        }
    }
}

代码

public static void merge(int[] a1, int i, int iEnd, int j, int jEnd,
                              int[] a2, int k) {
    if (i > iEnd) {
        System.arraycopy(a1, j, a2, k, jEnd - j + 1);
        return;
    }
    if (j > jEnd) {
        System.arraycopy(a1, i, a2, k, iEnd - i + 1);
        return;
    }
    if (a1[i] < a1[j]) {
        a2[k] = a1[i];
        merge(a1, i + 1, iEnd, j, jEnd, a2, k + 1);
    } else {
        a2[k] = a1[j];
        merge(a1, i, iEnd, j + 1, jEnd, a2, k + 1);
    }
}

测试

int[] a1 = {1, 5, 6, 2, 4, 10, 11};
int[] a2 = new int[a1.length];
merge(a1, 0, 2, 3, 6, a2, 0);

方法2

代码

public static void merge(int[] a1, int i, int iEnd,
                             int j, int jEnd,
                             int[] a2) {
    int k = i;
    while (i <= iEnd && j <= jEnd) {
        if (a1[i] < a1[j]) {
            a2[k] = a1[i];
            i++;
        } else {
            a2[k] = a1[j];
            j++;
        }
        k++;
    }
    if (i > iEnd) {
        System.arraycopy(a1, j, a2, k, jEnd - j + 1);
    }
    if (j > jEnd) {
        System.arraycopy(a1, i, a2, k, iEnd - i + 1);
    }
}

测试

int[] a1 = {1, 5, 6, 2, 4, 10, 11};
int[] a2 = new int[a3.length];
merge(a1, 0, 2, 3, 6, a2);

2.2 链表

1) 概述

定义

在计算机科学中,链表是数据元素的线性集合,其每个元素都指向下一个元素,元素存储上并不连续

In computer science, a linked list is a linear collection of data elements whose order is not given by their physical placement in memory. Instead, each element points to the next.

可以分类为[^5]

  • 单向链表,每个元素只知道其下一个元素是谁

image-20221110083407176

  • 双向链表,每个元素知道其上一个元素和下一个元素

image-20221110083427372

  • 循环链表,通常的链表尾节点 tail 指向的都是 null,而循环链表的 tail 指向的是头节点 head

image-20221110083538273

链表内还有一种特殊的节点称为哨兵(Sentinel)节点,也叫做哑元( Dummy)节点,它不存储数据,通常用作头尾,用来简化边界判断,如下图所示

image-20221110084611550

随机访问性能

根据 index 查找,时间复杂度 O ( n ) O(n) O(n)

插入或删除性能

  • 起始位置: O ( 1 ) O(1) O(1)
  • 结束位置:如果已知 tail 尾节点是 O ( 1 ) O(1) O(1),不知道 tail 尾节点是 O ( n ) O(n) O(n)
  • 中间位置:根据 index 查找时间 + O ( 1 ) O(1) O(1)

2) 单向链表

根据单向链表的定义,首先定义一个存储 value 和 next 指针的类 Node,和一个描述头部节点的引用

public class SinglyLinkedList {
    
    private Node head; // 头部节点
    
    private static class Node { // 节点类
        int value;
        Node next;

        public Node(int value, Node next) {
            this.value = value;
            this.next = next;
        }
    }
}
  • Node 定义为内部类,是为了对外隐藏实现细节,没必要让类的使用者关心 Node 结构
  • 定义为 static 内部类,是因为 Node 不需要与 SinglyLinkedList 实例相关,多个 SinglyLinkedList实例能共用 Node 类定义

头部添加

public class SinglyLinkedList {
    // ...
    public void addFirst(int value) {
		this.head = new Node(value, this.head);
    }
}
  • 如果 this.head == null,新增节点指向 null,并作为新的 this.head
  • 如果 this.head != null,新增节点指向原来的 this.head,并作为新的 this.head
    • 注意赋值操作执行顺序是从右到左

while 遍历

public class SinglyLinkedList {
    // ...
    public void loop() {
        Node curr = this.head;
        while (curr != null) {
            // 做一些事
            curr = curr.next;
        }
    }
}

for 遍历

public class SinglyLinkedList {
    // ...
    public void loop() {
        for (Node curr = this.head; curr != null; curr = curr.next) {
            // 做一些事
        }
    }
}
  • 以上两种遍历都可以把要做的事以 Consumer 函数的方式传递进来
    • Consumer 的规则是一个参数无返回值,因此像 System.out::println 方法等都是 Consumer
    • 调用 Consumer 时,将当前节点 curr.value 作为参数传递给它

迭代器遍历

public class SinglyLinkedList implements Iterable<Integer> {
    // ...
    private class NodeIterator implements Iterator<Integer> {
        Node curr = head;
        
        public boolean hasNext() {
            return curr != null;
        }

        public Integer next() {
            int value = curr.value;
            curr = curr.next;
            return value;
        }
    }
    
    public Iterator<Integer> iterator() {
        return new NodeIterator();
    }
}
  • hasNext 用来判断是否还有必要调用 next
  • next 做两件事
    • 返回当前节点的 value
    • 指向下一个节点
  • NodeIterator 要定义为非 static 内部类,是因为它与 SinglyLinkedList 实例相关,是对某个 SinglyLinkedList 实例的迭代

递归遍历

public class SinglyLinkedList implements Iterable<Integer> {
    // ...
    public void loop() {
        recursion(this.head);
    }

    private void recursion(Node curr) {
        if (curr == null) {
            return;
        }
        // 前面做些事
        recursion(curr.next);
        // 后面做些事
    }
}

尾部添加

public class SinglyLinkedList {
    // ...
    private Node findLast() {
        if (this.head == null) {
            return null;
        }
        Node curr;
        for (curr = this.head; curr.next != null; ) {
            curr = curr.next;
        }
        return curr;
    }
    
    public void addLast(int value) {
        Node last = findLast();
        if (last == null) {
            addFirst(value);
            return;
        }
        last.next = new Node(value, null);
    }
}
  • 注意,找最后一个节点,终止条件是 curr.next == null
  • 分成两个方法是为了代码清晰,而且 findLast() 之后还能复用

尾部添加多个

public class SinglyLinkedList {
    // ...
	public void addLast(int first, int... rest) {
        
        Node sublist = new Node(first, null);
        Node curr = sublist;
        for (int value : rest) {
            curr.next = new Node(value, null);
            curr = curr.next;
        }
        
        Node last = findLast();
        if (last == null) {
            this.head = sublist;
            return;
        }
        last.next = sublist;
    }
}
  • 先串成一串 sublist
  • 再作为一个整体添加

根据索引获取

public class SinglyLinkedList {
    // ...
	private Node findNode(int index) {
        int i = 0;
        for (Node curr = this.head; curr != null; curr = curr.next, i++) {
            if (index == i) {
                return curr;
            }
        }
        return null;
    }
    
    private IllegalArgumentException illegalIndex(int index) {
        return new IllegalArgumentException(String.format("index [%d] 不合法%n", index));
    }
    
    public int get(int index) {
        Node node = findNode(index);
        if (node != null) {
            return node.value;
        }
        throw illegalIndex(index);
    }
}
  • 同样,分方法可以实现复用

插入

public class SinglyLinkedList {
    // ...
	public void insert(int index, int value) {
        if (index == 0) {
            addFirst(value);
            return;
        }
        Node prev = findNode(index - 1); // 找到上一个节点
        if (prev == null) { // 找不到
            throw illegalIndex(index);
        }
        prev.next = new Node(value, prev.next);
    }
}
  • 插入包括下面的删除,都必须找到上一个节点

删除

public class SinglyLinkedList {
    // ...
	public void remove(int index) {
        if (index == 0) {
            if (this.head != null) {
                this.head = this.head.next;
                return;
            } else {
                throw illegalIndex(index);
            }
        }
        Node prev = findNode(index - 1);
        Node curr;
        if (prev != null && (curr = prev.next) != null) {
            prev.next = curr.next;
        } else {
            throw illegalIndex(index);
        }
    }
}
  • 第一个 if 块对应着 removeFirst 情况
  • 最后一个 if 块对应着至少得两个节点的情况
    • 不仅仅判断上一个节点非空,还要保证当前节点非空

3) 单向链表(带哨兵)

观察之前单向链表的实现,发现每个方法内几乎都有判断是不是 head 这样的代码,能不能简化呢?

用一个不参与数据存储的特殊 Node 作为哨兵,它一般被称为哨兵或哑元,拥有哨兵节点的链表称为带头链表

public class SinglyLinkedListSentinel {
    // ...
    private Node head = new Node(Integer.MIN_VALUE, null);
}
  • 具体存什么值无所谓,因为不会用到它的值

加入哨兵节点后,代码会变得比较简单,先看几个工具方法

public class SinglyLinkedListSentinel {
    // ...
    
    // 根据索引获取节点
    private Node findNode(int index) {
        int i = -1;
        for (Node curr = this.head; curr != null; curr = curr.next, i++) {
            if (i == index) {
                return curr;
            }
        }
        return null;
    }
    
    // 获取最后一个节点
    private Node findLast() {
        Node curr;
        for (curr = this.head; curr.next != null; ) {
            curr = curr.next;
        }
        return curr;
    }
}
  • findNode 与之前类似,只是 i 初始值设置为 -1 对应哨兵,实际传入的 index 也是 [ − 1 , ∞ ) [-1, \infty) [1,)
  • findLast 绝不会返回 null 了,就算没有其它节点,也会返回哨兵作为最后一个节点

这样,代码简化为

public class SinglyLinkedListSentinel {
    // ...
    
    public void addLast(int value) {
        Node last = findLast();
        /*
        改动前
        if (last == null) {
            this.head = new Node(value, null);
            return;
        }
        */
        last.next = new Node(value, null);
    }
    
    public void insert(int index, int value) {
        /*
        改动前
        if (index == 0) {
            this.head = new Node(value, this.head);
            return;
        }
        */
        // index 传入 0 时,返回的是哨兵
        Node prev = findNode(index - 1);
        if (prev != null) {
            prev.next = new Node(value, prev.next);
        } else {
            throw illegalIndex(index);
        }
    }
    
    public void remove(int index) {
        /*
        改动前
        if (index == 0) {
            if (this.head != null) {
                this.head = this.head.next;
                return;
            } else {
                throw illegalIndex(index);
            }
        }
        */
        // index 传入 0 时,返回的是哨兵
        Node prev = findNode(index - 1);
        Node curr;
        if (prev != null && (curr = prev.next) != null) {
            prev.next = curr.next;
        } else {
            throw illegalIndex(index);
        }
    }
    
    public void addFirst(int value) {
        /*
        改动前
        this.head = new Node(value, this.head);
        */
		this.head.next = new Node(value, this.head.next);
        // 也可以视为 insert 的特例, 即 insert(0, value);
    }
}
  • 对于删除,前面说了【最后一个 if 块对应着至少得两个节点的情况】,现在有了哨兵,就凑足了两个节点

4) 双向链表(带哨兵)

public class DoublyLinkedListSentinel implements Iterable<Integer> {

    private final Node head;
    private final Node tail;

    public DoublyLinkedListSentinel() {
        head = new Node(null, 666, null);
        tail = new Node(null, 888, null);
        head.next = tail;
        tail.prev = head;
    }

    private Node findNode(int index) {
        int i = -1;
        for (Node p = head; p != tail; p = p.next, i++) {
            if (i == index) {
                return p;
            }
        }
        return null;
    }

    public void addFirst(int value) {
        insert(0, value);
    }

    public void removeFirst() {
        remove(0);
    }

    public void addLast(int value) {
        Node prev = tail.prev;
        Node added = new Node(prev, value, tail);
        prev.next = added;
        tail.prev = added;
    }

    public void removeLast() {
        Node removed = tail.prev;
        if (removed == head) {
            throw illegalIndex(0);
        }
        Node prev = removed.prev;
        prev.next = tail;
        tail.prev = prev;
    }

    public void insert(int index, int value) {
        Node prev = findNode(index - 1);
        if (prev == null) {
            throw illegalIndex(index);
        }
        Node next = prev.next;
        Node inserted = new Node(prev, value, next);
        prev.next = inserted;
        next.prev = inserted;
    }

    public void remove(int index) {
        Node prev = findNode(index - 1);
        if (prev == null) {
            throw illegalIndex(index);
        }
        Node removed = prev.next;
        if (removed == tail) {
            throw illegalIndex(index);
        }
        Node next = removed.next;
        prev.next = next;
        next.prev = prev;
    }

    private IllegalArgumentException illegalIndex(int index) {
        return new IllegalArgumentException(
                String.format("index [%d] 不合法%n", index));
    }

    @Override
    public Iterator<Integer> iterator() {
        return new Iterator<Integer>() {
            Node p = head.next;

            @Override
            public boolean hasNext() {
                return p != tail;
            }

            @Override
            public Integer next() {
                int value = p.value;
                p = p.next;
                return value;
            }
        };
    }

    static class Node {
        Node prev;
        int value;
        Node next;

        public Node(Node prev, int value, Node next) {
            this.prev = prev;
            this.value = value;
            this.next = next;
        }
    }
}

5) 环形链表(带哨兵)

双向环形链表带哨兵,这时哨兵既作为头,也作为尾

image-20221229144232651

image-20221229143756065

image-20221229153338425

image-20221229154248800

参考实现

public class DoublyLinkedListSentinel implements Iterable<Integer> {

    @Override
    public Iterator<Integer> iterator() {
        return new Iterator<>() {
            Node p = sentinel.next;

            @Override
            public boolean hasNext() {
                return p != sentinel;
            }

            @Override
            public Integer next() {
                int value = p.value;
                p = p.next;
                return value;
            }
        };
    }

    static class Node {
        Node prev;
        int value;
        Node next;

        public Node(Node prev, int value, Node next) {
            this.prev = prev;
            this.value = value;
            this.next = next;
        }
    }

    private final Node sentinel = new Node(null, -1, null); // 哨兵

    public DoublyLinkedListSentinel() {
        sentinel.next = sentinel;
        sentinel.prev = sentinel;
    }

    /**
     * 添加到第一个
     * @param value 待添加值
     */
    public void addFirst(int value) {
        Node next = sentinel.next;
        Node prev = sentinel;
        Node added = new Node(prev, value, next);
        prev.next = added;
        next.prev = added;
    }

    /**
     * 添加到最后一个
     * @param value 待添加值
     */
    public void addLast(int value) {
        Node prev = sentinel.prev;
        Node next = sentinel;
        Node added = new Node(prev, value, next);
        prev.next = added;
        next.prev = added;
    }
    
    /**
     * 删除第一个
     */
    public void removeFirst() {
        Node removed = sentinel.next;
        if (removed == sentinel) {
            throw new IllegalArgumentException("非法");
        }
        Node a = sentinel;
        Node b = removed.next;
        a.next = b;
        b.prev = a;
    }

    /**
     * 删除最后一个
     */
    public void removeLast() {
        Node removed = sentinel.prev;
        if (removed == sentinel) {
            throw new IllegalArgumentException("非法");
        }
        Node a = removed.prev;
        Node b = sentinel;
        a.next = b;
        b.prev = a;
    }

    /**
     * 根据值删除节点
     * <p>假定 value 在链表中作为 key, 有唯一性</p>
     * @param value 待删除值
     */
    public void removeByValue(int value) {
        Node removed = findNodeByValue(value);
        if (removed != null) {
            Node prev = removed.prev;
            Node next = removed.next;
            prev.next = next;
            next.prev = prev;
        }
    }

    private Node findNodeByValue(int value) {
        Node p = sentinel.next;
        while (p != sentinel) {
            if (p.value == value) {
                return p;
            }
            p = p.next;
        }
        return null;
    }

}

习题

E01. 反转单向链表-Leetcode 206

对应力扣题目 206. 反转链表 - 力扣(LeetCode)

输入:head = [1,2,3,4,5]
输出:[5,4,3,2,1]

输入:[1,2]
输出:[2,1]

输入:[]
输出:[]

方法1

构造一个新链表,从旧链表依次拿到每个节点,创建新节点添加至新链表头部,完成后新链表即是倒序的

public ListNode reverseList(ListNode o1) {
    ListNode n1 = null;
    ListNode p = o1;
    while (p != null) {
        n1 = new ListNode(p.val, n1);
        p = p.next;
    }
    return n1;
}

评价:简单直白,就是得新创建节点对象

方法2

与方法1 类似,构造一个新链表,从旧链表头部移除节点,添加到新链表头部,完成后新链表即是倒序的,区别在于原题目未提供节点外层的容器类,这里提供一个,另外一个区别是并不去构造新节点

static class List {
    ListNode head;

    public List(ListNode head) {
        this.head = head;
    }

    public ListNode removeFirst(){
        ListNode first = head;
        if (first != null) {
            head = first.next;
        }
        return first;
    }

    public void addFirst(ListNode first) {
        first.next = head;
        head = first;
    }
}

代码

public ListNode reverseList(ListNode head) {
    List list1 = new List(head);
    List list2 = new List(null);
    ListNode first;
    while ((first = list1.removeFirst()) != null) {
        list2.addFirst(first);
    }
    return list2.head;
}

评价:更加面向对象,如果实际写代码而非刷题,更多会这么做

方法3

递归,在时让 5 → 4 5 \rightarrow 4 54 4 → 3 4 \rightarrow 3 43

首先,写一个递归方法,返回值用来拿到最后一个节点

public ListNode reverseList(ListNode p) {
    if (p == null || p.next == null) { // 不足两个节点
        return p; // 最后一个节点
    }
    ListNode last = reverseList(p.next);
    return last;
}
  • 注意1:递归终止条件是 curr.next == null,目的是到最后一个节点就结束递归,与之前递归遍历不一样
  • 注意2:需要考虑空链表即 p == null 的情况

可以先测试一下

ListNode o5 = new ListNode(5, null);
ListNode o4 = new ListNode(4, o5);
ListNode o3 = new ListNode(3, o4);
ListNode o2 = new ListNode(2, o3);
ListNode o1 = new ListNode(1, o2);
ListNode n1 = new E01Leetcode206().reverseList(o1);
System.out.println(n1);

会打印

[5]

下面为伪码调用过程,假设节点分别是 1 → 2 → 3 → 4 → 5 → n u l l 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow null 12345null,先忽略返回值

reverseList(ListNode p = 1) {
    reverseList(ListNode p = 2) {
    	reverseList(ListNode p = 3) {
    		reverseList(ListNode p = 4) {
    			reverseList(ListNode p = 5) {
    				if (p == null || p.next == null) {
                        return p; // 返回5
                    }
				}
                // 此时p是4, p.next是5
			}
            // 此时p是3, p.next是4
		}
        // 此时p是2, p.next是3
	}
    // 此时p是1, p.next是2
}

接下来,从 p = 4 开始,要让 5 → 4 5 \rightarrow 4 54 4 → 3 4 \rightarrow 3 43

reverseList(ListNode p = 1) {
    reverseList(ListNode p = 2) {
    	reverseList(ListNode p = 3) {
    		reverseList(ListNode p = 4) {
    			reverseList(ListNode p = 5) {
    				if (p == null || p.next == null) {
                        return p; // 返回5
                    }
				}
                // 此时p是4, p.next是5, 要让5指向4,代码写成 p.next.next=p
                // 还要注意4要指向 null, 否则就死链了
			}
            // 此时p是3, p.next是4
		}
        // 此时p是2, p.next是3
	}
    // 此时p是1, p.next是2
}

最终代码为:

public ListNode reverseList(ListNode p) {    
    if (p == null || p.next == null) { // 不足两个节点
        return p; // 最后一个节点
    }
    ListNode last = reverseList(p.next);
    p.next.next = p;
    p.next = null;
    return last;
}

Q:为啥不能在的过程中倒序?

A:比如

  • $ 1 \rightarrow 2 \rightarrow 3 $ 如果递的过程中让 2 → 1 2 \rightarrow 1 21 那么此时 2 → 3 2 \rightarrow 3 23 就被覆盖,不知道接下来递给谁
  • 而归的时候让 3 → 2 3 \rightarrow 2 32 不会影响上一层的 1 → 2 1 \rightarrow 2 12

评价:单向链表没有 prev 指针,但利用递归的特性【记住了】链表每次调用时相邻两个节点是谁

方法4

从链表每次拿到第二个节点,将其从链表断开,插入头部,直至它为 null 结束

  1. 设置指针 o1(旧头)、n1(新头)、o2(旧老二),分别指向第一,第一,第二节点

n 1   o 1 1 → o 2 2 → 3 → 4 → 5 → n u l l \frac{n1 \ o1}{1} \rightarrow \frac{o2}{2} \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow null 1n1 o12o2345null

  1. 将 o2 节点从链表断开,即 o1 节点指向第三节点

$ \frac{n1 \ o1}{1} \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow null$ , o 2 2 \frac{o2}{2} 2o2

  1. o2 节点链入链表头部,即

o 2 2 → n 1   o 1 1 → 3 → 4 → 5 → n u l l \frac{o2}{2} \rightarrow \frac{n1 \ o1}{1} \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow null 2o21n1 o1345null

  1. n1 指向 o2

n 1   o 2 2 → o 1 1 → 3 → 4 → 5 → n u l l \frac{n1 \ o2}{2} \rightarrow \frac{o1}{1} \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow null 2n1 o21o1345null

  1. o2 指向 o1 的下一个节点,即

n 1 2 → o 1 1 → o 2 3 → 4 → 5 → n u l l \frac{n1}{2} \rightarrow \frac{o1}{1} \rightarrow \frac{o2}{3} \rightarrow 4 \rightarrow 5 \rightarrow null 2n11o13o245null

  1. 重复以上 2 ∼ 5 2\sim5 25 步,直到 o2 指向 null

  2. 还应当考虑边界条件,即链表中不满两个元素时,无需走以上逻辑

参考答案

public ListNode reverseList(ListNode o1) {    
    if (o1 == null || o1.next == null) { // 不足两个节点
        return o1;
    }
    ListNode o2 = o1.next;
    ListNode n1 = o1;
    while (o2 != null) {
        o1.next = o2.next; 
        o2.next = n1;
        n1 = o2;
        o2 = o1.next;
    }
    return n1;
}

方法5

要点:把链表分成两部分,思路就是不断从链表2的头,往链表1的头搬移

  1. n1 指向 null,代表新链表一开始没有元素,o1 指向原链表的首节点

n 1 n u l l \frac{n1}{null} nulln1 o 1 1 → 2 → 3 → 4 → 5 → n u l l \frac{o1}{1} \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow null 1o12345null

  1. 开始循环,o2 指向原链表次节点

n 1 n u l l \frac{n1}{null} nulln1 o 1 1 → o 2 2 → 3 → 4 → 5 → n u l l \frac{o1}{1} \rightarrow \frac{o2}{2} \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow null 1o12o2345null

  1. 搬移

o 1 1 → n 1 n u l l \frac{o1}{1} \rightarrow \frac{n1}{null} 1o1nulln1 o 2 2 → 3 → 4 → 5 → n u l l \frac{o2}{2} \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow null 2o2345null

  1. 指针复位

n 1 1 → n u l l \frac{n1}{1} \rightarrow null 1n1null o 1   o 2 2 → 3 → 4 → 5 → n u l l \frac{o1 \ o2}{2} \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow null 2o1 o2345null

  1. 重复 2 ∼ 4 2\sim4 24
  2. 当 o1 = null 时退出循环

参考答案

public ListNode reverseList(ListNode o1) {
    if (o1 == null || o1.next == null) {
        return o1;
    }
    ListNode n1 = null;
    while (o1 != null) {
        ListNode o2 = o1.next;
        o1.next = n1;
        n1 = o1;
        o1 = o2;
    }
    return n1;
}

评价:本质上与方法2 相同,只是方法2更为面向对象

E02. 根据值删除节点-Leetcode 203

例如

输入:head = [1,2,6,3,6], val = 6
输出:[1,2,3]

输入:head = [], val = 1
输出:[]

输入:head = [7,7,7,7], val = 7
输出:[]

方法1

图中 s 代表 sentinel 哨兵(如果不加哨兵,则删除第一个节点要特殊处理),例如要删除 6

p1   p2
s -> 1 -> 2 -> 6 -> 3 -> 6 -> null
  • 如果 p2 不等于目标,则 p1,p2 不断后移
	 p1   p2
s -> 1 -> 2 -> 6 -> 3 -> 6 -> null

	 	  p1   p2
s -> 1 -> 2 -> 6 -> 3 -> 6 -> null
  • p2 == 6,删除它,注意 p1 此时保持不变,p2 后移
	 	  p1   p2
s -> 1 -> 2 -> 3 -> 6 -> null
  • p2 不等于目标,则 p1,p2 不断后移
	 	  	   p1   p2
s -> 1 -> 2 -> 3 -> 6 -> null
  • p2 == 6,删除它,注意 p1 此时保持不变,p2 后移
	 	  	   p1   p2
s -> 1 -> 2 -> 3 -> null
  • p2 == null 退出循环

最后代码

public ListNode removeElements(ListNode head, int val) {
    ListNode sentinel = new ListNode(-1, head);
    ListNode p1 = sentinel;
    ListNode p2;
    while ((p2 = p1.next) != null) {
        if (p2.val == val) {
            p1.next = p2.next;
        } else {
            p1 = p1.next;
        }
    }
    return sentinel.next;
}

方法2

思路,递归函数负责返回:从当前节点(我)开始,完成删除的子链表

  1. 若我与 v 相等,应该返回下一个节点递归结果
  2. 若我与 v 不等,应该返回我,但我的 next 应该更新(让我能带上后续删过的子链表)
removeElements(ListNode p=1, int v=6){
    1.next=removeElements(ListNode p=2, int v=6){
    	2.next=removeElements(ListNode p=6, int v=6){
    		removeElements(ListNode p=3, int v=6){
    			3.next=removeElements(ListNode p=6, int v=6){
    				removeElements(ListNode p=null, int v=6){
    					// 没有节点,返回
                        return null
					}
				}
                return 3
			}
		}
        return 2
    }
    return 1
}

代码

public ListNode removeElements(ListNode head, int val) {
    if (head == null) {
        return null;
    }
    if (head.val == val) {
        return removeElements(head.next, val);
    } else {
        head.next = removeElements(head.next, val);
        return head;
    }
}
E03. 删除倒数节点-Leetcode 19

例如

输入:head = [1,2,3,4,5], n = 2
输出:[1,2,3,5]

输入:head = [1], n = 1
输出:[]

输入:head = [1,2], n = 1
输出:[1]

另外题目提示

  • 链表至少一个节点
  • n 只会在合理范围

方法1

思路,写一个递归函数,用来返回下一个节点的倒数序号

recursion(ListNode p=1, int n=2) {
    recursion(ListNode p=2, int n=2) {
    	recursion(ListNode p=3, int n=2) {
    		recursion(ListNode p=4, int n=2) {
    			recursion(ListNode p=5, int n=2) {
    				recursion(ListNode p=null, int n=2) {
    					return 0; // 最内层序号0
					}
                    return 1; // 上一次返回值+1
				}
                return 2;
			}
            if(返回值 == n == 2) {
                // 删除 next
            }
            return 3;
		}
        return 4;
	}
    return 5;
}

但上述代码有一个问题,就是若删除的是第一个节点,它没有上一个节点,因此可以加一个哨兵来解决

代码

public ListNode removeNthFromEnd(ListNode head, int n) {
    ListNode sentinel = new ListNode(-1, head);
    recursion(sentinel, n);
    return sentinel.next;
}

public int recursion(ListNode p, int n) {
    if (p == null) {
        return 0;
    }
    int nth = recursion(p.next, n);
    if (nth == n) {
        p.next = p.next.next;
    }
    return nth + 1;
}

Q:p.next.next 不怕空指针吗?

A:

  • p 是待删除节点的上一个节点,如果能递归回到 p,那么 p.next 肯定有值,不会是 null
  • 且题目说明了 n >=1,不会因为 nth == 0 而让 p.next 指向最后的 null

方法2

快慢指针,p1 指向待删节点的上一个,p2 先走 n + 1 步

i=0
p2
s -> 1 -> 2 -> 3 -> 4 -> 5 -> null

     i=1
     p2
s -> 1 -> 2 -> 3 -> 4 -> 5 -> null

          i=2
          p2
s -> 1 -> 2 -> 3 -> 4 -> 5 -> null

               i=3 从此开始 p1 p2 依次向右平移, 直到 p2 移动到末尾
p1             p2
s -> 1 -> 2 -> 3 -> 4 -> 5 -> null

               p1             p2
s -> 1 -> 2 -> 3 -> 4 -> 5 -> null

代码

public ListNode removeNthFromEnd(ListNode head, int n) {
    ListNode s = new ListNode(-1, head);
    ListNode p1 = s;
    ListNode p2 = s;
    for (int i = 0; i < n + 1; i++) {
        p2 = p2.next;
    }
    while (p2 != null) {
        p1 = p1.next;
        p2 = p2.next;
    }
    p1.next = p1.next.next;
    return s.next;
}

方法3

public ListNode removeNthFromEnd(ListNode head, int n) {
    Composite c = recursion(head, n);
    return c.node;
}

static class Composite {
    ListNode node;
    int nth;

    public Composite(ListNode node, int nth) {
        this.node = node;
        this.nth = nth;
    }
}

public Composite recursion(ListNode p, int n) {
    if (p == null) {
        return new Composite(null, 1);
    }
    Composite c = recursion(p.next, n);
    if (c.nth != n) {
        p.next = c.node;
        c.node = p;
    }
    c.nth +=1;
    return c;
}
E04. 有序链表去重-Leetcode 83

例如

输入:head = [1,1,2]
输出:[1,2]

输入:head = [1,1,2,3,3]
输出:[1,2,3]

注意:重复元素保留一个

方法1

p1   p2
1 -> 1 -> 2 -> 3 -> 3 -> null
  • p1.val == p2.val 那么删除 p2,注意 p1 此时保持不变
p1   p2
1 -> 2 -> 3 -> 3 -> null
  • p1.val != p2.val 那么 p1,p2 向后移动
     p1   p2
1 -> 2 -> 3 -> 3 -> null
         
          p1   p2
1 -> 2 -> 3 -> 3 -> null     
  • p1.val == p2.val 那么删除 p2
          p1   p2
1 -> 2 -> 3 -> null   
  • 当 p2 == null 退出循环

代码

public ListNode deleteDuplicates(ListNode head) {
    // 链表节点 < 2
    if (head == null || head.next == null) {
        return head;
    }
    // 链表节点 >= 2
    ListNode p1 = head;
    ListNode p2;
    while ((p2 = p1.next) != null) {
        if (p1.val == p2.val) {
            p1.next = p2.next;
        } else {
            p1 = p1.next;
        }
    }
    return head;
}

方法2

递归函数负责返回:从当前节点(我)开始,完成去重的链表

  1. 若我与 next 重复,返回 next
  2. 若我与 next 不重复,返回我,但 next 应当更新
deleteDuplicates(ListNode p=1) {
    deleteDuplicates(ListNode p=1) {
        1.next=deleteDuplicates(ListNode p=2) {
            2.next=deleteDuplicates(ListNode p=3) {
                deleteDuplicates(ListNode p=3) {
					// 只剩一个节点,返回
                    return 3
                }                
            }
            return 2
        }
        return 1
    }
}

代码

public ListNode deleteDuplicates(ListNode p) {
    if (p == null || p.next == null) {
        return p;
    }
    if(p.val == p.next.val) {
        return deleteDuplicates(p.next);
    } else {
        p.next = deleteDuplicates(p.next);
        return p;
    }
}
E05. 有序链表去重-Leetcode 82

例如

输入:head = [1,2,3,3,4,4,5]
输出:[1,2,5]

输入:head = [1,1,1,2,3]
输出:[2,3]

注意:重复元素一个不留

方法1

递归函数负责返回:从当前节点(我)开始,完成去重的链表

  1. 若我与 next 重复,一直找到下一个不重复的节点,以它的返回结果为准
  2. 若我与 next 不重复,返回我,同时更新 next
deleteDuplicates(ListNode p = 1) {
    // 找下个不重复的
	deleteDuplicates(ListNode p = 1) {
        deleteDuplicates(ListNode p = 1) {
			deleteDuplicates(ListNode p = 2) {
                2.next=deleteDuplicates(ListNode p = 3) {
					// 只剩一个节点,返回
                    return 3
                }
                return 2
			}
        }
    }
}

代码

public ListNode deleteDuplicates(ListNode p) {
    if (p == null || p.next == null) {
        return p;
    }
    if (p.val == p.next.val) {
        ListNode x = p.next.next;
        while (x != null && x.val == p.val) {
            x = x.next;
        }
        return deleteDuplicates(x);
    } else {
        p.next = deleteDuplicates(p.next);
        return p;
    }
}

方法2

p1 是待删除的上一个节点,每次循环对比 p2、p3 的值

  • 如果 p2 与 p3 的值重复,那么 p3 继续后移,直到找到与 p2 不重复的节点,p1 指向 p3 完成删除
  • 如果 p2 与 p3 的值不重复,p1,p2,p3 向后平移一位,继续上面的操作
  • p2 或 p3 为 null 退出循环
    • p2 为 null 的情况,比如链表为 1 1 1 null
p1 p2 p3
s, 1, 1, 1, 2, 3, null

p1 p2    p3
s, 1, 1, 1, 2, 3, null

p1 p2       p3
s, 1, 1, 1, 2, 3, null

p1 p3
s, 2, 3, null

p1 p2 p3
s, 2, 3, null

   p1 p2 p3
s, 2, 3, null

代码

public ListNode deleteDuplicates(ListNode head) {
    if (head == null || head.next == null) {
        return head;
    }

    ListNode s = new ListNode(-1, head);
    ListNode p1 = s;
    ListNode p2;
    ListNode p3;
    while ((p2 = p1.next) != null && (p3 = p2.next) != null) {
        if (p2.val == p3.val) {
            while ((p3 = p3.next) != null 
                   && p3.val == p2.val) {
            }
            p1.next = p3;
        } else {
            p1 = p1.next;
        }
    }
    return s.next;
}
E06. 合并有序链表-Leetcode 21

输入:l1 = [1,2,4], l2 = [1,3,4]
输出:[1,1,2,3,4,4]
    
输入:l1 = [], l2 = []
输出:[]

输入:l1 = [], l2 = [0]
输出:[0]

方法1

  • 谁小,把谁链给 p,p 和小的都向后平移一位
  • 当 p1、p2 有一个为 null,退出循环,把不为 null 的链给 p
p1
1	3	8	9	null

p2
2	4	null

p		
s	null

代码

public ListNode mergeTwoLists(ListNode p1, ListNode p2) {
    ListNode s = new ListNode(-1, null);
    ListNode p = s;
    while (p1 != null && p2 != null) {
        if (p1.val < p2.val) {
            p.next = p1;
            p1 = p1.next;
        } else {
            p.next = p2;
            p2 = p2.next;
        }
        p = p.next;
    }
    if (p1 != null) {
        p.next = p1;
    }
    if (p2 != null) {
        p.next = p2;
    }
    return s.next;
}
  • 可以自行验证中后两种情况

方法2

递归函数应该返回

  • 更小的那个链表节点,并把它剩余节点与另一个链表再次递归
  • 返回之前,更新此节点的 next
mergeTwoLists(p1=[1,3,8,9], p2=[2,4]) {
    1.next=mergeTwoLists(p1=[3,8,9], p2=[2,4]) {
        2.next=mergeTwoLists(p1=[3,8,9], p2=[4]) {            
            3.next=mergeTwoLists(p1=[8,9], p2=[4]) {
                4.next=mergeTwoLists(p1=[8,9], p2=null) {
                    return [8,9]
                }
                return 4
            }
            return 3
        }
        return 2
    }
	return 1
}
E07. 合并多个有序链表-Leetcode 23

输入:lists = [[1,4,5],[1,3,4],[2,6]]
输出:[1,1,2,3,4,4,5,6]
解释:链表数组如下:
[
  1->4->5,
  1->3->4,
  2->6
]
将它们合并到一个有序链表中得到。
1->1->2->3->4->4->5->6

方法1

递归

public ListNode mergeKLists(ListNode[] lists) {
    if (lists.length == 0) {
        return null;
    }
    return split(lists, 0, lists.length - 1);
}

public ListNode split(ListNode[] lists, int i, int j) {
    System.out.println(i + " " + j);
    if (j == i) {
        return lists[i];
    }
    int m = (i + j) >>> 1;
    return mergeTwoLists(
        split(lists, i, m),
        split(lists, m + 1, j)
    );
}

还可以用优先级队列求解,这个放在后面讲

E08. 查找链表中间节点-Leetcode 876

例如

输入:[1,2,3,4,5]
输出:此列表中的结点 3 (序列化形式:[3,4,5])

输入:[1,2,3,4,5,6]
输出:此列表中的结点 4 (序列化形式:[4,5,6])
  • 偶数节点时,中间点是靠右的那个

解法:快慢指针,快指针一次走两步,慢指针一次走一步,当快指针到链表结尾时,慢指针恰好走到链表的一半

public ListNode middleNode(ListNode head) {
    ListNode p1 = head;	// 慢指针,中间点
    ListNode p2 = head;	// 快指针
    while (p2 != null && p2.next != null) {
        p1 = p1.next;
        p2 = p2.next;
        p2 = p2.next;
    }
    return p1;
}
E09. 回文链表-Leetcode 234

所谓回文指正着读、反着读,结果一样,例如

[1,2,2,1]
[1,2,3,2,1]

它们都是回文链表,不是回文的例子

[1,2,3,1]  --反过来-->  [1,3,2,1]

解法

/*
    步骤1. 找中间点
    步骤2. 中间点后半个链表反转
    步骤3. 反转后链表与原链表逐一比较
*/
public boolean isPalindrome(ListNode head) {
    ListNode middle = middle(head);
    ListNode newHead = reverse(middle);
    while (newHead != null) {
        if (newHead.val != head.val) {
            return false;
        }
        newHead = newHead.next;
        head = head.next;
    }
    return true;
}

private ListNode reverse(ListNode o1) {
    ListNode n1 = null;
    while (o1 != null) {
        ListNode o2 = o1.next;
        o1.next = n1;
        n1 = o1;
        o1 = o2;
    }
    return n1;
}

private ListNode middle(ListNode head) {
    ListNode p1 = head; // 慢
    ListNode p2 = head; // 快
    while (p2 != null && p2.next != null) {
        p1 = p1.next;
        p2 = p2.next.next;
    }
    return p1;
}

优化后解法

public boolean isPalindrome(ListNode h1) {
    if (h1 == null || h1.next == null) {
        return true;
    }
    ListNode p1 = h1; 	// 慢指针,中间点
    ListNode p2 = h1; 	// 快指针
    ListNode n1 = null;	// 新头
    ListNode o1 = h1;	// 旧头
    // 快慢指针找中间点
    while (p2 != null && p2.next != null) {
        p1 = p1.next;
        p2 = p2.next.next;

        // 反转前半部分
        o1.next = n1;
        n1 = o1;
        o1 = p1;
    }
    if (p2 != null) { // 节点数为奇数
        p1 = p1.next;
    }
    // 同步比较新头和后半部分
    while (n1 != null) {
        if (n1.val != p1.val) {
            return false;
        }
        p1 = p1.next;
        n1 = n1.next;
    }
    return true;
}
E10. 环形链表-Leetcode 141

本题以及下题,实际是 Floyd’s Tortoise and Hare Algorithm (Floyd 龟兔赛跑算法)[^15]

除了 Floyd 判环算法外,还有其它的判环算法,详见 https://en.wikipedia.org/wiki/Cycle_detection

在这里插入图片描述

如果链表上存在环,那么在环上以不同速度前进的两个指针必定会在某个时刻相遇。算法分为两个阶段

阶段1

  • 龟一次走一步,兔子一次走两步
  • 当兔子能走到终点时,不存在环
  • 当兔子能追上龟时,可以判断存在环

阶段2

  • 从它们第一次相遇开始,龟回到起点,兔子保持原位不变
  • 龟和兔子一次都走一步
  • 当再次相遇时,地点就是环的入口

为什么呢?

  • 设起点到入口走 a 步(本例是 7),绕环一圈长度为 b(本例是 5),
  • 那么从起点开始,走 a + 绕环 n 圈,都能找到环入口
  • 第一次相遇时
    • 兔走了 a + 绕环 n 圈(本例 2 圈) + k,k 是它们相遇距环入口位置(本例 3,不重要)
    • 龟走了 a + 绕环 n 圈(本例 0 圈) + k,当然它绕的圈数比兔少
    • 兔走的距离是龟的两倍,所以龟走的 = 兔走的 - 龟走的 = 绕环 n 圈
  • 而前面分析过,如果走 a + 绕环 n 圈,都能找到环入口,因此从相遇点开始,再走 a 步,就是环入口

阶段1 参考代码(判断是否有环)

public boolean hasCycle(ListNode head) {
    ListNode h = head; // 兔
    ListNode t = head; // 龟
    while (h != null && h.next != null) {
        t = t.next;
        h = h.next.next;
        if(h == t){
            return true;
        }
    }
    return false;
}
E11. 环形链表-Leetcode 142

阶段2 参考代码(找到环入口)

public ListNode detectCycle(ListNode head) {
    ListNode t = head; // 龟
    ListNode h = head; // 兔
    while (h != null && h.next != null) {
        t = t.next;
        h = h.next.next;
        if (h == t) {
            t = head;
            while (true) {
                if (h == t) {
                    return h;
                }
                h = h.next;
                t = t.next;
            }
        }
    }
    return null;
}
  • 还有一道扩展题目,也可以用判环算法思想来解:就是 287 题,寻找重复数
Ex1. 删除节点-Leetcode 237

这道题目比较简单,留给大家自己练习

例如

输入:head = [4,5,1,9], node = 5
输出:[4,1,9]


输入:head = [4,5,1,9], node = 1
输出:[4,5,9]

注意:被删除的节点不是末尾节点

参考答案

public class Ex1Leetcode237 {
    /**
     *
     * @param node 待删除节点, 题目已说明肯定不是最后一个节点
     */
    public void deleteNode(ListNode node) {
        node.val = node.next.val;		// 下一个节点值赋值给待"删除"节点
        node.next = node.next.next;		// 把下一个节点删除
    }

    public static void main(String[] args) {
        ListNode o5 = new ListNode(5, null);
        ListNode o4 = new ListNode(4, o5);
        ListNode o3 = new ListNode(3, o4);
        ListNode o2 = new ListNode(2, o3);
        ListNode o1 = new ListNode(1, o2);
        System.out.println(o1);
        new E0xLeetcode237().deleteNode(o3);
        System.out.println(o1);
    }
}

输出

[1,2,3,4,5]
[1,2,4,5]
Ex2. 共尾链表-Leetcode 160

原题叫做相交链表,个人觉得用共尾链表更形象些,此题更像是一道脑筋急转弯,留给大家练习

例如,下图的两个链表 [1, 2, 4, 5] 与 [3, 4, 5] 它们中 [4, 5] 是相同的,此时应返回节点 4

image-20221228081715799

非共尾的情况,如下图所示,此时返回 null

image-20221228082002730

思路,称两个链表为 a=[1, 2, 4, 5],b=[3, 4, 5],图中用 N 代表 null

  1. 遍历 a,遇到 null 时改道遍历 b
  2. 与此同时,遍历 b,遇到 null 时改道遍历 a
  3. 在此过程中,如果遇到相同的节点,即为找寻目标,返回即可,如下图中的第二次出现的 4
  4. 相同节点应该比较其引用值,图中数字只是为了便于区分
1	2	4	5	N	3	4	5	N
3	4	5	N	1	2	4	5	N

如果两个链表长度相同,则可以更早找到目标,例如 a=[1, 4, 5],b=[3, 4, 5],第一次出现 4 时,即可返回

1	4	5	N	3	4	5	N
3	4	5	N	1	4	5	N

如果是非共尾的情况,如 a=[1, 2, 4],b=[3, 5],可以看到,唯一相等的情况,是遍历到最后那个 N 此时退出循环

1	2	4	N	3	5	N
3	5	N	1	2	4	N

代码

public ListNode getIntersectionNode(ListNode a, ListNode b) {
    ListNode p1 = a;
    ListNode p2 = b;
    while (true) {
        if (p1 == p2) {
            return p1;
        }
        if (p1 == null) {
            p1 = b;
        } else {
            p1 = p1.next;
        }
        if (p2 == null) {
            p2 = a;
        } else {
            p2 = p2.next;
        }            
    }
}

2.3 递归

1) 概述

定义

计算机科学中,递归是一种解决计算问题的方法,其中解决方案取决于同一类问题的更小子集

In computer science, recursion is a method of solving a computational problem where the solution depends on solutions to smaller instances of the same problem.

比如单链表递归遍历的例子:

void f(Node node) {
    if(node == null) {
        return;
    }
    println("before:" + node.value)
    f(node.next);
    println("after:" + node.value)
}

说明:

  1. 自己调用自己,如果说每个函数对应着一种解决方案,自己调用自己意味着解决方案是一样的(有规律的)
  2. 每次调用,函数处理的数据会较上次缩减(子集),而且最后会缩减至无需继续递归
  3. 内层函数调用(子集处理)完成,外层函数才能算调用完成

原理

假设链表中有 3 个节点,value 分别为 1,2,3,以上代码的执行流程就类似于下面的伪码

// 1 -> 2 -> 3 -> null  f(1)

void f(Node node = 1) {
    println("before:" + node.value) // 1
    void f(Node node = 2) {
        println("before:" + node.value) // 2
        void f(Node node = 3) {
            println("before:" + node.value) // 3
            void f(Node node = null) {
                if(node == null) {
                    return;
                }
            }
            println("after:" + node.value) // 3
        }
        println("after:" + node.value) // 2
    }
    println("after:" + node.value) // 1
}

思路

  1. 确定能否使用递归求解
  2. 推导出递推关系,即父问题与子问题的关系,以及递归的结束条件

例如之前遍历链表的递推关系为
f ( n ) = { 停止 n = n u l l f ( n . n e x t ) n ≠ n u l l f(n) = \begin{cases} 停止& n = null \\ f(n.next) & n \neq null \end{cases} f(n)={停止f(n.next)n=nulln=null

  • 深入到最里层叫做
  • 从最里层出来叫做
  • 的过程中,外层函数内的局部变量(以及方法参数)并未消失,的时候还可以用到

2) 单路递归 Single Recursion

E01. 阶乘

用递归方法求阶乘

  • 阶乘的定义 n ! = 1 ⋅ 2 ⋅ 3 ⋯ ( n − 2 ) ⋅ ( n − 1 ) ⋅ n n!= 1⋅2⋅3⋯(n-2)⋅(n-1)⋅n n!=123(n2)(n1)n,其中 n n n 为自然数,当然 0 ! = 1 0! = 1 0!=1

  • 递推关系

f ( n ) = { 1 n = 1 n ∗ f ( n − 1 ) n > 1 f(n) = \begin{cases} 1 & n = 1\\ n * f(n-1) & n > 1 \end{cases} f(n)={1nf(n1)n=1n>1

代码

private static int f(int n) {
    if (n == 1) {
        return 1;
    }
    return n * f(n - 1);
}

拆解伪码如下,假设 n 初始值为 3

f(int n = 3) { // 解决不了,递
    return 3 * f(int n = 2) { // 解决不了,继续递
        return 2 * f(int n = 1) {
            if (n == 1) { // 可以解决, 开始归
                return 1;
            }
        }
    }
}
E02. 反向打印字符串

用递归反向打印字符串,n 为字符在整个字符串 str 中的索引位置

  • :n 从 0 开始,每次 n + 1,一直递到 n == str.length() - 1
  • :从 n == str.length() 开始归,从归打印,自然是逆序的

递推关系
f ( n ) = { 停止 n = s t r . l e n g t h ( ) f ( n + 1 ) 0 ≤ n ≤ s t r . l e n g t h ( ) − 1 f(n) = \begin{cases} 停止 & n = str.length() \\ f(n+1) & 0 \leq n \leq str.length() - 1 \end{cases} f(n)={停止f(n+1)n=str.length()0nstr.length()1
代码为

public static void reversePrint(String str, int index) {
    if (index == str.length()) {
        return;
    }
    reversePrint(str, index + 1);
    System.out.println(str.charAt(index));
}

拆解伪码如下,假设字符串为 “abc”

void reversePrint(String str, int index = 0) {
    void reversePrint(String str, int index = 1) {
        void reversePrint(String str, int index = 2) {
            void reversePrint(String str, int index = 3) { 
                if (index == str.length()) {
                    return; // 开始归
                }
            }
            System.out.println(str.charAt(index)); // 打印 c
        }
        System.out.println(str.charAt(index)); // 打印 b
    }
    System.out.println(str.charAt(index)); // 打印 a
}
E03. 二分查找(单路递归)
public static int binarySearch(int[] a, int target) {
    return recursion(a, target, 0, a.length - 1);
}

public static int recursion(int[] a, int target, int i, int j) {
    if (i > j) {
        return -1;
    }
    int m = (i + j) >>> 1;
    if (target < a[m]) {
        return recursion(a, target, i, m - 1);
    } else if (a[m] < target) {
        return recursion(a, target, m + 1, j);
    } else {
        return m;
    }
}
E04. 冒泡排序(单路递归)
public static void main(String[] args) {
    int[] a = {3, 2, 6, 1, 5, 4, 7};
    bubble(a, 0, a.length - 1);
    System.out.println(Arrays.toString(a));
}

private static void bubble(int[] a, int low, int high) {
    if(low == high) {
        return;
    }
    int j = low;
    for (int i = low; i < high; i++) {
        if (a[i] > a[i + 1]) {
            swap(a, i, i + 1);
            j = i;
        }
    }
    bubble(a, low, j);
}

private static void swap(int[] a, int i, int j) {
    int t = a[i];
    a[i] = a[j];
    a[j] = t;
}
  • low 与 high 为未排序范围
  • j 表示的是未排序的边界,下一次递归时的 high
    • 发生交换,意味着有无序情况
    • 最后一次交换(以后没有无序)时,左侧 i 仍是无序,右侧 i+1 已然有序
  • 视频中讲解的是只考虑 high 边界的情况,参考以上代码,理解在 low … high 范围内的处理方法
E05. 插入排序(单路递归)
public static void main(String[] args) {
    int[] a = {3, 2, 6, 1, 5, 7, 4};
    insertion(a, 1, a.length - 1);
    System.out.println(Arrays.toString(a));
}

private static void insertion(int[] a, int low, int high) {
    if (low > high) {
        return;
    }
    int i = low - 1;
    int t = a[low];
    while (i >= 0 && a[i] > i) {
        a[i + 1] = a[i];
        i--;
    }
    if(i + 1 != low) {
        a[i + 1] = t;
    }    
    insertion(a, low + 1, high);
}
  • 已排序区域:[0 … i … low-1]
  • 未排序区域:[low … high]
  • 视频中讲解的是只考虑 low 边界的情况,参考以上代码,理解 low-1 … high 范围内的处理方法
  • 扩展:利用二分查找 leftmost 版本,改进寻找插入位置的代码
E06. 约瑟夫问题[^16](单路递归)

n n n 个人排成圆圈,从头开始报数,每次数到第 m m m 个人( m m m 1 1 1 开始)杀之,继续从下一个人重复以上过程,求最后活下来的人是谁?

方法1

根据最后的存活者 a 倒推出它在上一轮的索引号

f(n,m)本轮索引为了让 a 是这个索引,上一轮应当这样排规律
f(1,3)0x x x a(0 + 3) % 2
f(2,3)1x x x 0 a(1 + 3) % 3
f(3,3)1x x x 0 a(1 + 3) % 4
f(4,3)0x x x a(0 + 3) % 5
f(5,3)3x x x 0 1 2 a(3 + 3) % 6
f(6,3)0x x x a

方法2

设 n 为总人数,m 为报数次数,解返回的是这些人的索引,从0开始

f(n, m)规律
f(1, 3)0
f(2, 3)0 1 => 13%2=1
f(3, 3)0 1 2 => 0 13%3=0
f(4, 3)0 1 2 3 => 3 0 13%4=3
f(5, 3)0 1 2 3 4 => 3 4 0 13%5=3
f(6, 3)0 1 2 3 4 5 => 3 4 5 0 13%6=3

一. 找出等价函数

规律:下次报数的起点为 k = m % n k = m \% n k=m%n

  • 首次出列人的序号是 k − 1 k-1 k1,剩下的的 n − 1 n-1 n1 个人重新组成约瑟夫环
  • 下次从 k k k 开始数,序号如下
    • k ,   k + 1 ,   . . .   ,   0 ,   1 ,   k − 2 k,\ k+1, \ ...\ ,\ 0,\ 1,\ k-2 k, k+1, ... , 0, 1, k2,如上例中 3   4   5   0   1 3\ 4\ 5\ 0\ 1 3 4 5 0 1

这个函数称之为 g ( n − 1 , m ) g(n-1,m) g(n1,m),它的最终结果与 f ( n , m ) f(n,m) f(n,m) 是相同的。

二. 找到映射函数

现在想办法找到 g ( n − 1 , m ) g(n-1,m) g(n1,m) f ( n − 1 , m ) f(n-1, m) f(n1,m) 的对应关系,即
3 → 0 4 → 1 5 → 2 0 → 3 1 → 4 3 \rightarrow 0 \\ 4 \rightarrow 1 \\ 5 \rightarrow 2 \\ 0 \rightarrow 3 \\ 1 \rightarrow 4 \\ 3041520314
映射函数为
m a p p i n g ( x ) = { x − k x = [ k . . n − 1 ] x + n − k x = [ 0.. k − 2 ] mapping(x) = \begin{cases} x-k & x=[k..n-1] \\ x+n-k & x=[0..k-2] \end{cases} mapping(x)={xkx+nkx=[k..n1]x=[0..k2]
等价于下面函数
m a p p i n g ( x ) = ( x + n − k ) % n mapping(x) = (x + n - k)\%{n} mapping(x)=(x+nk)%n
代入测试一下
3 → ( 3 + 6 − 3 ) % 6 → 0 4 → ( 4 + 6 − 3 ) % 6 → 1 5 → ( 5 + 6 − 3 ) % 6 → 2 0 → ( 0 + 6 − 3 ) % 6 → 3 1 → ( 1 + 6 − 3 ) % 6 → 4 3 \rightarrow (3+6-3)\%6 \rightarrow 0 \\ 4 \rightarrow (4+6-3)\%6 \rightarrow 1 \\ 5 \rightarrow (5+6-3)\%6 \rightarrow 2 \\ 0 \rightarrow (0+6-3)\%6 \rightarrow 3 \\ 1 \rightarrow (1+6-3)\%6 \rightarrow 4 \\ 3(3+63)%604(4+63)%615(5+63)%620(0+63)%631(1+63)%64
综上有
f ( n − 1 , m ) = m a p p i n g ( g ( n − 1 , m ) ) f(n-1,m) = mapping(g(n-1,m)) f(n1,m)=mapping(g(n1,m))

三. 求逆映射函数

映射函数是根据 x 计算 y,逆映射函数即根据 y 得到 x
m a p p i n g − 1 ( x ) = ( x + k ) % n mapping^{-1}(x) = (x + k)\%n mapping1(x)=(x+k)%n
代入测试一下
0 → ( 0 + 3 ) % 6 → 3 1 → ( 1 + 3 ) % 6 → 4 2 → ( 2 + 3 ) % 6 → 5 3 → ( 3 + 3 ) % 6 → 0 4 → ( 4 + 3 ) % 6 → 1 0 \rightarrow (0+3)\%6 \rightarrow 3 \\ 1 \rightarrow (1+3)\%6 \rightarrow 4 \\ 2 \rightarrow (2+3)\%6 \rightarrow 5 \\ 3 \rightarrow (3+3)\%6 \rightarrow 0 \\ 4 \rightarrow (4+3)\%6 \rightarrow 1 \\ 0(0+3)%631(1+3)%642(2+3)%653(3+3)%604(4+3)%61
因此可以求得
g ( n − 1 , m ) = m a p p i n g − 1 ( f ( n − 1 , m ) ) g(n-1,m) = mapping^{-1}(f(n-1,m)) g(n1,m)=mapping1(f(n1,m))

四. 递推式

代入推导
f ( n , m ) =   g ( n − 1 , m ) =   m a p p i n g − 1 ( f ( n − 1 , m ) ) =   ( f ( n − 1 , m ) + k ) % n =   ( f ( n − 1 , m ) + m % n ) % n =   ( f ( n − 1 , m ) + m ) % n \begin{aligned} f(n,m) = \ & g(n-1,m) \\ = \ & mapping^{-1}(f(n-1,m)) \\ = \ & (f(n-1,m) + k) \% n \\ = \ & (f(n-1,m) + m\%n) \% n \\ = \ & (f(n-1,m) + m) \% n \\ \end{aligned} f(n,m)= = = = = g(n1,m)mapping1(f(n1,m))(f(n1,m)+k)%n(f(n1,m)+m%n)%n(f(n1,m)+m)%n
最后一步化简是利用了模运算法则

( a + b ) % n = ( a % n + b % n ) % n (a+b)\%n = (a\%n + b\%n) \%n (a+b)%n=(a%n+b%n)%n 例如

  • ( 6 + 6 ) % 5 = 2 = ( 6 + 6 % 5 ) % 5 (6+6)\%5 = 2 = (6+6\%5)\%5 (6+6)%5=2=(6+6%5)%5
  • ( 6 + 5 ) % 5 = 1 = ( 6 + 5 % 5 ) % 5 (6+5)\%5 = 1 = (6+5\%5)\%5 (6+5)%5=1=(6+5%5)%5
  • ( 6 + 4 ) % 5 = 0 = ( 6 + 4 % 5 ) % 5 (6+4)\%5 = 0 = (6+4\%5)\%5 (6+4)%5=0=(6+4%5)%5

最终递推式
f ( n , m ) = { ( f ( n − 1 , m ) + m ) % n n > 1 0 n = 1 f(n,m) = \begin{cases} (f(n-1,m) + m) \% n & n>1\\ 0 & n = 1 \end{cases} f(n,m)={(f(n1,m)+m)%n0n>1n=1

3) 多路递归 Multi Recursion

E01. 斐波那契数列-Leetcode 70
  • 之前的例子是每个递归函数只包含一个自身的调用,这称之为 single recursion
  • 如果每个递归函数例包含多个自身调用,称之为 multi recursion

递推关系
f ( n ) = { 0 n = 0 1 n = 1 f ( n − 1 ) + f ( n − 2 ) n > 1 f(n) = \begin{cases} 0 & n=0 \\ 1 & n=1 \\ f(n-1) + f(n-2) & n>1 \end{cases} f(n)= 01f(n1)+f(n2)n=0n=1n>1

下面的表格列出了数列的前几项

F0F1F2F3F4F5F6F7F8F9F10F11F12F13
01123581321345589144233

实现

public static int f(int n) {
    if (n == 0) {
        return 0;
    }
    if (n == 1) {
        return 1;
    }
    return f(n - 1) + f(n - 2);
}

执行流程

  • 绿色代表正在执行(对应递),灰色代表执行结束(对应归)
  • 递不到头,不能归,对应着深度优先搜索

时间复杂度

  • 递归的次数也符合斐波那契规律, 2 ∗ f ( n + 1 ) − 1 2 * f(n+1)-1 2f(n+1)1
  • 时间复杂度推导过程
    • 斐波那契通项公式 f ( n ) = 1 5 ∗ ( 1 + 5 2 n − 1 − 5 2 n ) f(n) = \frac{1}{\sqrt{5}}*({\frac{1+\sqrt{5}}{2}}^n - {\frac{1-\sqrt{5}}{2}}^n) f(n)=5 1(21+5 n215 n)
    • 简化为: f ( n ) = 1 2.236 ∗ ( 1.618 n − ( − 0.618 ) n ) f(n) = \frac{1}{2.236}*({1.618}^n - {(-0.618)}^n) f(n)=2.2361(1.618n(0.618)n)
    • 带入递归次数公式 2 ∗ 1 2.236 ∗ ( 1.618 n + 1 − ( − 0.618 ) n + 1 ) − 1 2*\frac{1}{2.236}*({1.618}^{n+1} - {(-0.618)}^{n+1})-1 22.2361(1.618n+1(0.618)n+1)1
    • 时间复杂度为 Θ ( 1.61 8 n ) \Theta(1.618^n) Θ(1.618n)
  1. 更多 Fibonacci 参考[8][9][^10]
  2. 以上时间复杂度分析,未考虑大数相加的因素

变体1 - 兔子问题[^8]

image-20221110155655827

  • 第一个月,有一对未成熟的兔子(黑色,注意图中个头较小)
  • 第二个月,它们成熟
  • 第三个月,它们能产下一对新的小兔子(蓝色)
  • 所有兔子遵循相同规律,求第 n n n 个月的兔子数

分析

兔子问题如何与斐波那契联系起来呢?设第 n 个月兔子数为 f ( n ) f(n) f(n)

  • f ( n ) f(n) f(n) = 上个月兔子数 + 新生的小兔子数
  • 而【新生的小兔子数】实际就是【上个月成熟的兔子数】
  • 因为需要一个月兔子就成熟,所以【上个月成熟的兔子数】也就是【上上个月的兔子数】
  • 上个月兔子数,即 f ( n − 1 ) f(n-1) f(n1)
  • 上上个月的兔子数,即 f ( n − 2 ) f(n-2) f(n2)

因此本质还是斐波那契数列,只是从其第一项开始

变体2 - 青蛙爬楼梯

  • 楼梯有 n n n
  • 青蛙要爬到楼顶,可以一次跳一阶,也可以一次跳两阶
  • 只能向上跳,问有多少种跳法

分析

n跳法规律
1(1)暂时看不出
2(1,1) (2)暂时看不出
3(1,1,1) (1,2) (2,1)暂时看不出
4(1,1,1,1) (1,2,1) (2,1,1)
(1,1,2) (2,2)
最后一跳,跳一个台阶的,基于f(3)
最后一跳,跳两个台阶的,基于f(2)
5
E02. 汉诺塔[^13](多路递归)

Tower of Hanoi,是一个源于印度古老传说:大梵天创建世界时做了三根金刚石柱,在一根柱子从下往上按大小顺序摞着 64 片黄金圆盘,大梵天命令婆罗门把圆盘重新摆放在另一根柱子上,并且规定

  • 一次只能移动一个圆盘
  • 小圆盘上不能放大圆盘

下面的动图演示了4片圆盘的移动方法

使用程序代码模拟圆盘的移动过程,并估算出时间复杂度

思路

  • 假设每根柱子标号 a,b,c,每个圆盘用 1,2,3 … 表示其大小,圆盘初始在 a,要移动到的目标是 c

  • 如果只有一个圆盘,此时是最小问题,可以直接求解

    • 移动圆盘1 a ↦ c a \mapsto c ac

在这里插入图片描述

  • 如果有两个圆盘,那么

    • 圆盘1 a ↦ b a \mapsto b ab
    • 圆盘2 a ↦ c a \mapsto c ac
    • 圆盘1 b ↦ c b \mapsto c bc

    在这里插入图片描述

  • 如果有三个圆盘,那么

    • 圆盘12 a ↦ b a \mapsto b ab
    • 圆盘3 a ↦ c a \mapsto c ac
    • 圆盘12 b ↦ c b \mapsto c bc

在这里插入图片描述

  • 如果有四个圆盘,那么

    • 圆盘 123 a ↦ b a \mapsto b ab
    • 圆盘4 a ↦ c a \mapsto c ac
    • 圆盘 123 b ↦ c b \mapsto c bc

在这里插入图片描述

题解

public class E02HanoiTower {


    /*
             源 借 目
        h(4, a, b, c) -> h(3, a, c, b)
                         a -> c
                         h(3, b, a, c)
     */
    static LinkedList<Integer> a = new LinkedList<>();
    static LinkedList<Integer> b = new LinkedList<>();
    static LinkedList<Integer> c = new LinkedList<>();

    static void init(int n) {
        for (int i = n; i >= 1; i--) {
            a.add(i);
        }
    }

    static void h(int n, LinkedList<Integer> a, 
                  LinkedList<Integer> b, 
                  LinkedList<Integer> c) {
        if (n == 0) {
            return;
        }
        h(n - 1, a, c, b);
        c.addLast(a.removeLast());
        print();
        h(n - 1, b, a, c);
    }

    private static void print() {
        System.out.println("-----------------------");
        System.out.println(a);
        System.out.println(b);
        System.out.println(c);
    }

    public static void main(String[] args) {
        init(3);
        print();
        h(3, a, b, c);
    }
}
E03. 杨辉三角[^6]

image-20221219172514410

分析

把它斜着看

        1
      1   1
    1   2   1
  1   3   3   1
1   4   6   4   1
  • i i i,列 j j j,那么 [ i ] [ j ] [i][j] [i][j] 的取值应为 [ i − 1 ] [ j − 1 ] + [ i − 1 ] [ j ] [i-1][j-1] + [i-1][j] [i1][j1]+[i1][j]
  • j = 0 j=0 j=0 i = j i=j i=j 时, [ i ] [ j ] [i][j] [i][j] 取值为 1 1 1

题解

public static void print(int n) {
    for (int i = 0; i < n; i++) {
        if (i < n - 1) {
            System.out.printf("%" + 2 * (n - 1 - i) + "s", " ");
        }

        for (int j = 0; j < i + 1; j++) {
            System.out.printf("%-4d", element(i, j));
        }
        System.out.println();
    }
}

public static int element(int i, int j) {
    if (j == 0 || i == j) {
        return 1;
    }
    return element(i - 1, j - 1) + element(i - 1, j);
}

优化1

是 multiple recursion,因此很多递归调用是重复的,例如

  • recursion(3, 1) 分解为
    • recursion(2, 0) + recursion(2, 1)
  • 而 recursion(3, 2) 分解为
    • recursion(2, 1) + recursion(2, 2)

这里 recursion(2, 1) 就重复调用了,事实上它会重复很多次,可以用 static AtomicInteger counter = new AtomicInteger(0) 来查看递归函数的调用总次数

事实上,可以用 memoization 来进行优化:

public static void print1(int n) {
    int[][] triangle = new int[n][];
    for (int i = 0; i < n; i++) {
        // 打印空格
        triangle[i] = new int[i + 1];
        for (int j = 0; j <= i; j++) {
            System.out.printf("%-4d", element1(triangle, i, j));
        }
        System.out.println();
    }
}

public static int element1(int[][] triangle, int i, int j) {
    if (triangle[i][j] > 0) {
        return triangle[i][j];
    }

    if (j == 0 || i == j) {
        triangle[i][j] = 1;
        return triangle[i][j];
    }
    triangle[i][j] = element1(triangle, i - 1, j - 1) + element1(triangle, i - 1, j);
    return triangle[i][j];
}
  • 将数组作为递归函数内可以访问的遍历,如果 t r i a n g l e [ i ] [ j ] triangle[i][j] triangle[i][j] 已经有值,说明该元素已经被之前的递归函数计算过,就不必重复计算了

优化2

public static void print2(int n) {
    int[] row = new int[n];
    for (int i = 0; i < n; i++) {
        // 打印空格
        createRow(row, i);
        for (int j = 0; j <= i; j++) {
            System.out.printf("%-4d", row[j]);
        }
        System.out.println();
    }
}

private static void createRow(int[] row, int i) {
    if (i == 0) {
        row[0] = 1;
        return;
    }
    for (int j = i; j > 0; j--) {
        row[j] = row[j - 1] + row[j];
    }
}

注意:还可以通过每一行的前一项计算出下一项,不必借助上一行,这与杨辉三角的另一个特性有关,暂不展开了

其它题目

力扣对应题目,但递归不适合在力扣刷高分,因此只列出相关题目,不做刷题讲解了

题号名称
Leetcode118杨辉三角
Leetcode119杨辉三角II

4) 递归优化-记忆法

上述代码存在很多重复的计算,例如求 f ( 5 ) f(5) f(5) 递归分解过程

image-20221207092417933

可以看到(颜色相同的是重复的):

  • f ( 3 ) f(3) f(3) 重复了 2 次
  • f ( 2 ) f(2) f(2) 重复了 3 次
  • f ( 1 ) f(1) f(1) 重复了 5 次
  • f ( 0 ) f(0) f(0) 重复了 3 次

随着 n n n 的增大,重复次数非常可观,如何优化呢?

Memoization 记忆法(也称备忘录)是一种优化技术,通过存储函数调用结果(通常比较昂贵),当再次出现相同的输入(子问题)时,就能实现加速效果,改进后的代码

public static void main(String[] args) {
    int n = 13;
    int[] cache = new int[n + 1];
    Arrays.fill(cache, -1);
    cache[0] = 0;
    cache[1] = 1;
    System.out.println(f(cache, n));
}

public static int f(int[] cache, int n) {
    if (cache[n] != -1) {
        return cache[n];
    }

    cache[n] = f(cache, n - 1) + f(cache, n - 2);
    return cache[n];
}

优化后的图示,只要结果被缓存,就不会执行其子问题

image-20221213173225807

  • 改进后的时间复杂度为 O ( n ) O(n) O(n)
  • 请自行验证改进后的效果
  • 请自行分析改进后的空间复杂度

注意

  1. 记忆法是动态规划的一种情况,强调的是自顶向下的解决
  2. 记忆法的本质是空间换时间

5) 递归优化-尾递归

爆栈

用递归做 n + ( n − 1 ) + ( n − 2 ) . . . + 1 n + (n-1) + (n-2) ... + 1 n+(n1)+(n2)...+1

public static long sum(long n) {
    if (n == 1) {
        return 1;
    }
    return n + sum(n - 1);
}

在我的机器上 n = 12000 n = 12000 n=12000 时,爆栈了

Exception in thread "main" java.lang.StackOverflowError
	at Test.sum(Test.java:10)
	at Test.sum(Test.java:10)
	at Test.sum(Test.java:10)
	at Test.sum(Test.java:10)
	at Test.sum(Test.java:10)
	...

为什么呢?

  • 每次方法调用是需要消耗一定的栈内存的,这些内存用来存储方法参数、方法内局部变量、返回地址等等
  • 方法调用占用的内存需要等到方法结束时才会释放
  • 而递归调用我们之前讲过,不到最深不会回头,最内层方法没完成之前,外层方法都结束不了
    • 例如, s u m ( 3 ) sum(3) sum(3) 这个方法内有个需要执行 3 + s u m ( 2 ) 3 + sum(2) 3+sum(2) s u m ( 2 ) sum(2) sum(2) 没返回前,加号前面的 3 3 3 不能释放
    • 看下面伪码
long sum(long n = 3) {
    return 3 + long sum(long n = 2) {
        return 2 + long sum(long n = 1) {
            return 1;
        }
    }
}

尾调用

如果函数的最后一步是调用一个函数,那么称为尾调用,例如

function a() {
    return b()
}

下面三段代码不能叫做尾调用

function a() {
    const c = b()
    return c
}
  • 因为最后一步并非调用函数
function a() {
    return b() + 1
}
  • 最后一步执行的是加法
function a(x) {
    return b() + x
}
  • 最后一步执行的是加法

一些语言[^11]的编译器能够对尾调用做优化,例如

function a() {
    // 做前面的事
    return b() 
}

function b() {
    // 做前面的事
    return c()
}

function c() {
    return 1000
}

a()

没优化之前的伪码

function a() {
    return function b() {
        return function c() {
            return 1000
        }
    }
}

优化后伪码如下

a()
b()
c()

为何尾递归才能优化?

调用 a 时

  • a 返回时发现:没什么可留给 b 的,将来返回的结果 b 提供就可以了,用不着我 a 了,我的内存就可以释放

调用 b 时

  • b 返回时发现:没什么可留给 c 的,将来返回的结果 c 提供就可以了,用不着我 b 了,我的内存就可以释放

如果调用 a 时

  • 不是尾调用,例如 return b() + 1,那么 a 就不能提前结束,因为它还得利用 b 的结果做加法

尾递归

尾递归是尾调用的一种特例,也就是最后一步执行的是同一个函数

尾递归避免爆栈

安装 Scala

image-20221111122709227

Scala 入门

object Main {
  def main(args: Array[String]): Unit = {
    println("Hello Scala")
  }
}
  • Scala 是 java 的近亲,java 中的类都可以拿来重用
  • 类型是放在变量后面的
  • Unit 表示无返回值,类似于 void
  • 不需要以分号作为结尾,当然加上也对

还是先写一个会爆栈的函数

def sum(n: Long): Long = {
    if (n == 1) {
        return 1
    }
    return n + sum(n - 1)
}
  • Scala 最后一行代码若作为返回值,可以省略 return

不出所料,在 n = 11000 n = 11000 n=11000 时,还是出了异常

println(sum(11000))

Exception in thread "main" java.lang.StackOverflowError
	at Main$.sum(Main.scala:25)
	at Main$.sum(Main.scala:25)
	at Main$.sum(Main.scala:25)
	at Main$.sum(Main.scala:25)
	...

这是因为以上代码,还不是尾调用,要想成为尾调用,那么:

  1. 最后一行代码,必须是一次函数调用
  2. 内层函数必须摆脱与外层函数的关系,内层函数执行后不依赖于外层的变量或常量
def sum(n: Long): Long = {
    if (n == 1) {
        return 1
    }
    return n + sum(n - 1)  // 依赖于外层函数的 n 变量
}

如何让它执行后就摆脱对 n 的依赖呢?

  • 不能等递归回来再做加法,那样就必须保留外层的 n
  • 把 n 当做内层函数的一个参数传进去,这时 n 就属于内层函数了
  • 传参时就完成累加, 不必等回来时累加
sum(n - 1, n + 累加器)

改写后代码如下

@tailrec
def sum(n: Long, accumulator: Long): Long = {
    if (n == 1) {
        return 1 + accumulator
    } 
    return sum(n - 1, n + accumulator)
}
  • accumulator 作为累加器
  • @tailrec 注解是 scala 提供的,用来检查方法是否符合尾递归
  • 这回 sum(10000000, 0) 也没有问题,打印 50000005000000

执行流程如下,以伪码表示 s u m ( 4 , 0 ) sum(4, 0) sum(4,0)

// 首次调用
def sum(n = 4, accumulator = 0): Long = {
    return sum(4 - 1, 4 + accumulator)
}

// 接下来调用内层 sum, 传参时就完成了累加, 不必等回来时累加,当内层 sum 调用后,外层 sum 空间没必要保留
def sum(n = 3, accumulator = 4): Long = {
    return sum(3 - 1, 3 + accumulator)
}

// 继续调用内层 sum
def sum(n = 2, accumulator = 7): Long = {
    return sum(2 - 1, 2 + accumulator)
}

// 继续调用内层 sum, 这是最后的 sum 调用完就返回最后结果 10, 前面所有其它 sum 的空间早已释放
def sum(n = 1, accumulator = 9): Long = {
    if (1 == 1) {
        return 1 + accumulator
    }
}

本质上,尾递归优化是将函数的递归调用,变成了函数的循环调用

改循环避免爆栈

public static void main(String[] args) {
    long n = 100000000;
    long sum = 0;
    for (long i = n; i >= 1; i--) {
        sum += i;
    }
    System.out.println(sum);
}

6) 递归时间复杂度-Master theorem[^14]

若有递归式
T ( n ) = a T ( n b ) + f ( n ) T(n) = aT(\frac{n}{b}) + f(n) T(n)=aT(bn)+f(n)
其中

  • T ( n ) T(n) T(n) 是问题的运行时间, n n n 是数据规模
  • a a a 是子问题个数
  • T ( n b ) T(\frac{n}{b}) T(bn) 是子问题运行时间,每个子问题被拆成原问题数据规模的 n b \frac{n}{b} bn
  • f ( n ) f(n) f(n) 是除递归外执行的计算

x = log ⁡ b a x = \log_{b}{a} x=logba,即 x = log ⁡ 子问题缩小倍数 子问题个数 x = \log_{子问题缩小倍数}{子问题个数} x=log子问题缩小倍数子问题个数

那么
T ( n ) = { Θ ( n x ) f ( n ) = O ( n c ) 并且 c < x Θ ( n x log ⁡ n ) f ( n ) = Θ ( n x ) Θ ( n c ) f ( n ) = Ω ( n c ) 并且 c > x T(n) = \begin{cases} \Theta(n^x) & f(n) = O(n^c) 并且 c \lt x\\ \Theta(n^x\log{n}) & f(n) = \Theta(n^x)\\ \Theta(n^c) & f(n) = \Omega(n^c) 并且 c \gt x \end{cases} T(n)= Θ(nx)Θ(nxlogn)Θ(nc)f(n)=O(nc)并且c<xf(n)=Θ(nx)f(n)=Ω(nc)并且c>x

例1

T ( n ) = 2 T ( n 2 ) + n 4 T(n) = 2T(\frac{n}{2}) + n^4 T(n)=2T(2n)+n4

  • 此时 x = 1 < 4 x = 1 < 4 x=1<4,由后者决定整个时间复杂度 Θ ( n 4 ) \Theta(n^4) Θ(n4)
  • 如果觉得对数不好算,可以换为求【 b b b 的几次方能等于 a a a

例2

T ( n ) = T ( 7 n 10 ) + n T(n) = T(\frac{7n}{10}) + n T(n)=T(107n)+n

  • a = 1 , b = 10 7 , x = 0 , c = 1 a=1, b=\frac{10}{7}, x=0, c=1 a=1,b=710,x=0,c=1
  • 此时 x = 0 < 1 x = 0 < 1 x=0<1,由后者决定整个时间复杂度 Θ ( n ) \Theta(n) Θ(n)

例3

T ( n ) = 16 T ( n 4 ) + n 2 T(n) = 16T(\frac{n}{4}) + n^2 T(n)=16T(4n)+n2

  • a = 16 , b = 4 , x = 2 , c = 2 a=16, b=4, x=2, c=2 a=16,b=4,x=2,c=2
  • 此时 x = 2 = c x=2 = c x=2=c,时间复杂度 Θ ( n 2 log ⁡ n ) \Theta(n^2 \log{n}) Θ(n2logn)

例4

T ( n ) = 7 T ( n 3 ) + n 2 T(n)=7T(\frac{n}{3}) + n^2 T(n)=7T(3n)+n2

  • a = 7 , b = 3 , x = 1. ? , c = 2 a=7, b=3, x=1.?, c=2 a=7,b=3,x=1.?,c=2
  • 此时 x = log ⁡ 3 7 < 2 x = \log_{3}{7} < 2 x=log37<2,由后者决定整个时间复杂度 Θ ( n 2 ) \Theta(n^2) Θ(n2)

例5

T ( n ) = 7 T ( n 2 ) + n 2 T(n) = 7T(\frac{n}{2}) + n^2 T(n)=7T(2n)+n2

  • a = 7 , b = 2 , x = 2. ? , c = 2 a=7, b=2, x=2.?, c=2 a=7,b=2,x=2.?,c=2
  • 此时 x = l o g 2 7 > 2 x = log_2{7} > 2 x=log27>2,由前者决定整个时间复杂度 Θ ( n log ⁡ 2 7 ) \Theta(n^{\log_2{7}}) Θ(nlog27)

例6

T ( n ) = 2 T ( n 4 ) + n T(n) = 2T(\frac{n}{4}) + \sqrt{n} T(n)=2T(4n)+n

  • a = 2 , b = 4 , x = 0.5 , c = 0.5 a=2, b=4, x = 0.5, c=0.5 a=2,b=4,x=0.5,c=0.5
  • 此时 x = 0.5 = c x = 0.5 = c x=0.5=c,时间复杂度 Θ ( n   log ⁡ n ) \Theta(\sqrt{n}\ \log{n}) Θ(n  logn)

例7. 二分查找递归

int f(int[] a, int target, int i, int j) {
    if (i > j) {
        return -1;
    }
    int m = (i + j) >>> 1;
    if (target < a[m]) {
        return f(a, target, i, m - 1);
    } else if (a[m] < target) {
        return f(a, target, m + 1, j);
    } else {
        return m;
    }
}
  • 子问题个数 a = 1 a = 1 a=1
  • 子问题数据规模缩小倍数 b = 2 b = 2 b=2
  • 除递归外执行的计算是常数级 c = 0 c=0 c=0

T ( n ) = T ( n 2 ) + n 0 T(n) = T(\frac{n}{2}) + n^0 T(n)=T(2n)+n0

  • 此时 x = 0 = c x=0 = c x=0=c,时间复杂度 Θ ( log ⁡ n ) \Theta(\log{n}) Θ(logn)

例8. 归并排序递归

void split(B[], i, j, A[])
{
    if (j - i <= 1)                    
        return;                                
    m = (i + j) / 2;             
    
    // 递归
    split(A, i, m, B);  
    split(A, m, j, B); 
    
    // 合并
    merge(B, i, m, j, A);
}
  • 子问题个数 a = 2 a=2 a=2
  • 子问题数据规模缩小倍数 b = 2 b=2 b=2
  • 除递归外,主要时间花在合并上,它可以用 f ( n ) = n f(n) = n f(n)=n 表示

T ( n ) = 2 T ( n 2 ) + n T(n) = 2T(\frac{n}{2}) + n T(n)=2T(2n)+n

  • 此时 x = 1 = c x=1=c x=1=c,时间复杂度 Θ ( n log ⁡ n ) \Theta(n\log{n}) Θ(nlogn)

例9. 快速排序递归

algorithm quicksort(A, lo, hi) is 
  if lo >= hi || lo < 0 then 
    return
  
  // 分区
  p := partition(A, lo, hi) 
  
  // 递归
  quicksort(A, lo, p - 1) 
  quicksort(A, p + 1, hi) 
  • 子问题个数 a = 2 a=2 a=2
  • 子问题数据规模缩小倍数
    • 如果分区分的好, b = 2 b=2 b=2
    • 如果分区没分好,例如分区1 的数据是 0,分区 2 的数据是 n − 1 n-1 n1
  • 除递归外,主要时间花在分区上,它可以用 f ( n ) = n f(n) = n f(n)=n 表示

情况1 - 分区分的好

T ( n ) = 2 T ( n 2 ) + n T(n) = 2T(\frac{n}{2}) + n T(n)=2T(2n)+n

  • 此时 x = 1 = c x=1=c x=1=c,时间复杂度 Θ ( n log ⁡ n ) \Theta(n\log{n}) Θ(nlogn)

情况2 - 分区没分好

T ( n ) = T ( n − 1 ) + T ( 1 ) + n T(n) = T(n-1) + T(1) + n T(n)=T(n1)+T(1)+n

  • 此时不能用主定理求解

7) 递归时间复杂度-展开求解

像下面的递归式,都不能用主定理求解

例1 - 递归求和

long sum(long n) {
    if (n == 1) {
        return 1;
    }
    return n + sum(n - 1);
}

T ( n ) = T ( n − 1 ) + c T(n) = T(n-1) + c T(n)=T(n1)+c T ( 1 ) = c T(1) = c T(1)=c

下面为展开过程

T ( n ) = T ( n − 2 ) + c + c T(n) = T(n-2) + c + c T(n)=T(n2)+c+c

T ( n ) = T ( n − 3 ) + c + c + c T(n) = T(n-3) + c + c + c T(n)=T(n3)+c+c+c

T ( n ) = T ( n − ( n − 1 ) ) + ( n − 1 ) c T(n) = T(n-(n-1)) + (n-1)c T(n)=T(n(n1))+(n1)c

  • 其中 T ( n − ( n − 1 ) ) T(n-(n-1)) T(n(n1)) T ( 1 ) T(1) T(1)
  • 带入求得 T ( n ) = c + ( n − 1 ) c = n c T(n) = c + (n-1)c = nc T(n)=c+(n1)c=nc

时间复杂度为 O ( n ) O(n) O(n)

例2 - 递归冒泡排序

void bubble(int[] a, int high) {
    if(0 == high) {
        return;
    }
    for (int i = 0; i < high; i++) {
        if (a[i] > a[i + 1]) {
            swap(a, i, i + 1);
        }
    }
    bubble(a, high - 1);
}

T ( n ) = T ( n − 1 ) + n T(n) = T(n-1) + n T(n)=T(n1)+n T ( 1 ) = c T(1) = c T(1)=c

下面为展开过程

T ( n ) = T ( n − 2 ) + ( n − 1 ) + n T(n) = T(n-2) + (n-1) + n T(n)=T(n2)+(n1)+n

T ( n ) = T ( n − 3 ) + ( n − 2 ) + ( n − 1 ) + n T(n) = T(n-3) + (n-2) + (n-1) + n T(n)=T(n3)+(n2)+(n1)+n

T ( n ) = T ( 1 ) + 2 + . . . + n = T ( 1 ) + ( n − 1 ) 2 + n 2 = c + n 2 2 + n 2 − 1 T(n) = T(1) + 2 + ... + n = T(1) + (n-1)\frac{2+n}{2} = c + \frac{n^2}{2} + \frac{n}{2} -1 T(n)=T(1)+2+...+n=T(1)+(n1)22+n=c+2n2+2n1

时间复杂度 O ( n 2 ) O(n^2) O(n2)

注:

  • 等差数列求和为 个数 ∗ ∣ 首项 − 末项 ∣ 2 个数*\frac{\vert首项-末项\vert}{2} 个数2首项末项

例3 - 递归快排

快速排序分区没分好的极端情况

T ( n ) = T ( n − 1 ) + T ( 1 ) + n T(n) = T(n-1) + T(1) + n T(n)=T(n1)+T(1)+n T ( 1 ) = c T(1) = c T(1)=c

T ( n ) = T ( n − 1 ) + c + n T(n) = T(n-1) + c + n T(n)=T(n1)+c+n

下面为展开过程

T ( n ) = T ( n − 2 ) + c + ( n − 1 ) + c + n T(n) = T(n-2) + c + (n-1) + c + n T(n)=T(n2)+c+(n1)+c+n

T ( n ) = T ( n − 3 ) + c + ( n − 2 ) + c + ( n − 1 ) + c + n T(n) = T(n-3) + c + (n-2) + c + (n-1) + c + n T(n)=T(n3)+c+(n2)+c+(n1)+c+n

T ( n ) = T ( n − ( n − 1 ) ) + ( n − 1 ) c + 2 + . . . + n = n 2 2 + 2 c n + n 2 − 1 T(n) = T(n-(n-1)) + (n-1)c + 2+...+n = \frac{n^2}{2} + \frac{2cn+n}{2} -1 T(n)=T(n(n1))+(n1)c+2+...+n=2n2+22cn+n1

时间复杂度 O ( n 2 ) O(n^2) O(n2)

不会推导的同学可以进入 https://www.wolframalpha.com/

  • 例1 输入 f(n) = f(n - 1) + c, f(1) = c
  • 例2 输入 f(n) = f(n - 1) + n, f(1) = c
  • 例3 输入 f(n) = f(n - 1) + n + c, f(1) = c

2.4 队列

1) 概述

计算机科学中,queue 是以顺序的方式维护的一组数据集合,在一端添加数据,从另一端移除数据。习惯来说,添加的一端称为,移除的一端称为,就如同生活中的排队买商品

In computer science, a queue is a collection of entities that are maintained in a sequence and can be modified by the addition of entities at one end of the sequence and the removal of entities from the other end of the sequence

先定义一个简化的队列接口

public interface Queue<E> {

    /**
     * 向队列尾插入值
     * @param value 待插入值
     * @return 插入成功返回 true, 插入失败返回 false
     */
    boolean offer(E value);

    /**
     * 从对列头获取值, 并移除
     * @return 如果队列非空返回对头值, 否则返回 null
     */
    E poll();

    /**
     * 从对列头获取值, 不移除
     * @return 如果队列非空返回对头值, 否则返回 null
     */
    E peek();

    /**
     * 检查队列是否为空
     * @return 空返回 true, 否则返回 false
     */
    boolean isEmpty();

    /**
     * 检查队列是否已满
     * @return 满返回 true, 否则返回 false
     */
    boolean isFull();
}

2) 链表实现

下面以单向环形带哨兵链表方式来实现队列

image-20221230150105089

image-20221230150141318

image-20221230150153271

代码

public class LinkedListQueue<E>
        implements Queue<E>, Iterable<E> {

    private static class Node<E> {
        E value;
        Node<E> next;

        public Node(E value, Node<E> next) {
            this.value = value;
            this.next = next;
        }
    }

    private Node<E> head = new Node<>(null, null);
    private Node<E> tail = head;
    private int size = 0;
    private int capacity = Integer.MAX_VALUE;

    {
        tail.next = head;
    }

    public LinkedListQueue() {
    }

    public LinkedListQueue(int capacity) {
        this.capacity = capacity;
    }

    @Override
    public boolean offer(E value) {
        if (isFull()) {
            return false;
        }
        Node<E> added = new Node<>(value, head);
        tail.next = added;
        tail = added;
        size++;
        return true;
    }

    @Override
    public E poll() {
        if (isEmpty()) {
            return null;
        }
        Node<E> first = head.next;
        head.next = first.next;
        if (first == tail) {
            tail = head;
        }
        size--;
        return first.value;
    }

    @Override
    public E peek() {
        if (isEmpty()) {
            return null;
        }
        return head.next.value;
    }

    @Override
    public boolean isEmpty() {
        return head == tail;
    }

    @Override
    public boolean isFull() {
        return size == capacity;
    }

    @Override
    public Iterator<E> iterator() {
        return new Iterator<E>() {
            Node<E> p = head.next;
            @Override
            public boolean hasNext() {
                return p != head;
            }
            @Override
            public E next() {
                E value = p.value;
                p = p.next;
                return value;
            }
        };
    }
}

3) 环形数组实现

好处

  1. 对比普通数组,起点和终点更为自由,不用考虑数据移动
  2. “环”意味着不会存在【越界】问题
  3. 数组性能更佳
  4. 环形数组比较适合实现有界队列、RingBuffer 等

image-20221228175413998

下标计算

例如,数组长度是 5,当前位置是 3 ,向前走 2 步,此时下标为 ( 3 + 2 ) % 5 = 0 (3 + 2)\%5 = 0 (3+2)%5=0

image-20221228180357257

( c u r + s t e p ) % l e n g t h (cur + step) \% length (cur+step)%length

  • cur 当前指针位置
  • step 前进步数
  • length 数组长度

注意:

  • 如果 step = 1,也就是一次走一步,可以在 >= length 时重置为 0 即可

判断空

image-20221231081009018

判断满

image-20221231080909475

满之后的策略可以根据业务需求决定

  • 例如我们要实现的环形队列,满之后就拒绝入队

代码

public class ArrayQueue<E> implements Queue<E>, Iterable<E>{

    private int head = 0;
    private int tail = 0;
    private final E[] array;
    private final int length;

    @SuppressWarnings("all")
    public ArrayQueue(int capacity) {
        length = capacity + 1;
        array = (E[]) new Object[length];
    }

    @Override
    public boolean offer(E value) {
        if (isFull()) {
            return false;
        }
        array[tail] = value;
        tail = (tail + 1) % length;
        return true;
    }

    @Override
    public E poll() {
        if (isEmpty()) {
            return null;
        }
        E value = array[head];
        head = (head + 1) % length;
        return value;
    }

    @Override
    public E peek() {
        if (isEmpty()) {
            return null;
        }
        return array[head];
    }

    @Override
    public boolean isEmpty() {
        return tail == head;
    }

    @Override
    public boolean isFull() {
        return (tail + 1) % length == head;
    }

    @Override
    public Iterator<E> iterator() {
        return new Iterator<E>() {
            int p = head;
            @Override
            public boolean hasNext() {
                return p != tail;
            }

            @Override
            public E next() {
                E value = array[p];
                p = (p + 1) % array.length;
                return value;
            }
        };
    }
}

判断空、满方法2

引入 size

public class ArrayQueue2<E> implements Queue<E>, Iterable<E> {

    private int head = 0;
    private int tail = 0;
    private final E[] array;
    private final int capacity;
    private int size = 0;

    @SuppressWarnings("all")
    public ArrayQueue2(int capacity) {
        this.capacity = capacity;
        array = (E[]) new Object[capacity];
    }

    @Override
    public boolean offer(E value) {
        if (isFull()) {
            return false;
        }
        array[tail] = value;
        tail = (tail + 1) % capacity;
        size++;
        return true;
    }

    @Override
    public E poll() {
        if (isEmpty()) {
            return null;
        }
        E value = array[head];
        head = (head + 1) % capacity;
        size--;
        return value;
    }

    @Override
    public E peek() {
        if (isEmpty()) {
            return null;
        }
        return array[head];
    }

    @Override
    public boolean isEmpty() {
        return size == 0;
    }

    @Override
    public boolean isFull() {
        return size == capacity;
    }

    @Override
    public Iterator<E> iterator() {
        return new Iterator<E>() {
            int p = head;

            @Override
            public boolean hasNext() {
                return p != tail;
            }

            @Override
            public E next() {
                E value = array[p];
                p = (p + 1) % capacity;
                return value;
            }
        };
    }
}

判断空、满方法3

  • head 和 tail 不断递增,用到索引时,再用它们进行计算,两个问题

    • 如何保证 head 和 tail 自增超过正整数最大值的正确性

    • 如何让取模运算性能更高

  • 答案:让 capacity 为 2 的幂

public class ArrayQueue3<E> implements Queue<E>, Iterable<E> {

    private int head = 0;
    private int tail = 0;
    private final E[] array;
    private final int capacity;

    @SuppressWarnings("all")
    public ArrayQueue3(int capacity) {
        if ((capacity & capacity - 1) != 0) {
            throw new IllegalArgumentException("capacity 必须为 2 的幂");
        }
        this.capacity = capacity;
        array = (E[]) new Object[this.capacity];
    }

    @Override
    public boolean offer(E value) {
        if (isFull()) {
            return false;
        }
        array[tail & capacity - 1] = value;
        tail++;
        return true;
    }

    @Override
    public E poll() {
        if (isEmpty()) {
            return null;
        }
        E value = array[head & capacity - 1];
        head++;
        return value;
    }

    @Override
    public E peek() {
        if (isEmpty()) {
            return null;
        }
        return array[head & capacity - 1];
    }

    @Override
    public boolean isEmpty() {
        return tail - head == 0;
    }

    @Override
    public boolean isFull() {
        return tail - head == capacity;
    }

    @Override
    public Iterator<E> iterator() {
        return new Iterator<E>() {
            int p = head;

            @Override
            public boolean hasNext() {
                return p != tail;
            }

            @Override
            public E next() {
                E value = array[p & capacity - 1];
                p++;
                return value;
            }
        };
    }
}

习题

E01. 二叉树层序遍历-Leetcode 102
class Solution {
    public List<List<Integer>> levelOrder(TreeNode root) {
        List<List<Integer>> result = new ArrayList<>();
        if(root == null) {
            return result;
        }
        LinkedListQueue<TreeNode> queue = new LinkedListQueue<>();
        queue.offer(root);
        int c1 = 1;		// 本层节点个数
        while (!queue.isEmpty()) {
            int c2 = 0; 	// 下层节点个数
            List<Integer> level = new ArrayList<>();
            for (int i = 0; i < c1; i++) {
                TreeNode node = queue.poll();
                level.add(node.val);
                if (node.left != null) {
                    queue.offer(node.left);
                    c2++;
                }
                if (node.right != null) {
                    queue.offer(node.right);
                    c2++;
                }
            }
            c1 = c2;
            result.add(level);
        }
        return result;
    }

    // 自定义队列
    static class LinkedListQueue<E> {

        private static class Node<E> {
            E value;
            Node<E> next;

            public Node(E value, Node<E> next) {
                this.value = value;
                this.next = next;
            }
        }

        private final Node<E> head = new Node<>(null, null);
        private Node<E> tail = head;
        int size = 0;
        private int capacity = Integer.MAX_VALUE;

        {
            tail.next = head;
        }

        public LinkedListQueue() {
        }

        public LinkedListQueue(int capacity) {
            this.capacity = capacity;
        }

        public boolean offer(E value) {
            if (isFull()) {
                return false;
            }
            Node<E> added = new Node<>(value, head);
            tail.next = added;
            tail = added;
            size++;
            return true;
        }

        public E poll() {
            if (isEmpty()) {
                return null;
            }
            Node<E> first = head.next;
            head.next = first.next;
            if (first == tail) {
                tail = head;
            }
            size--;
            return first.value;
        }

        public E peek() {
            if (isEmpty()) {
                return null;
            }
            return head.next.value;
        }

        public boolean isEmpty() {
            return head == tail;
        }

        public boolean isFull() {
            return size == capacity;
        }
    }
}
Ex1. 设计队列-Leetcode 622

由于与课堂例题差别不大,这里只给出参考解答

基于链表的实现

public class Ex1Leetcode622 {

    private static class Node {
        int value;
        Node next;
        Node(int value, Node next) {
            this.value = value;
            this.next = next;
        }
    }
    private final Node head = new Node(-1, null);
    private Node tail = head;
    private int size = 0;
    private int capacity = 0;

    {
        tail.next = head;
    }

    public Ex1Leetcode622(int capacity) {
        this.capacity = capacity;
    }

    public boolean enQueue(int value) {
        if(isFull()) {
            return false;
        }
        Node added = new Node(value, head);
        tail.next = added;
        tail = added;
        size++;
        return true;
    }

    public boolean deQueue() {
        if(isEmpty()) {
            return false;
        }
        Node first = head.next;
        head.next = first.next;
        if (first == tail) {
            tail = head;
        }
        size--;
        return true;
    }

    public int Front() {
        if(isEmpty()) {
            return -1;
        }
        return head.next.value;
    }

    public int Rear() {
        if(isEmpty()) {
            return -1;
        }
        return tail.value;
    }

    public boolean isEmpty() {
        return head == tail;
    }

    public boolean isFull() {
        return size == capacity;
    }
}

注意:

  • Leetcode 的实现里 deQueue(出队)返回值是布尔值,并不会返回队头元素
  • 它期望用法是先用 Front 返回对头元素,再 deQueue 出队

2.5 栈

1) 概述

计算机科学中,stack 是一种线性的数据结构,只能在其一端添加数据和移除数据。习惯来说,这一端称之为栈顶,另一端不能操作数据的称之为栈底,就如同生活中的一摞书

先提供一个栈接口

public interface Stack<E> {
    /**
     * 向栈顶压入元素
     * @param value 待压入值
     * @return 压入成功返回 true, 否则返回 false
     */
    boolean push(E value);

    /**
     * 从栈顶弹出元素
     * @return 栈非空返回栈顶元素, 栈为空返回 null
     */
    E pop();

    /**
     * 返回栈顶元素, 不弹出
     * @return 栈非空返回栈顶元素, 栈为空返回 null
     */
    E peek();

    /**
     * 判断栈是否为空
     * @return 空返回 true, 否则返回 false
     */
    boolean isEmpty();

    /**
     * 判断栈是否已满
     * @return 满返回 true, 否则返回 false
     */
    boolean isFull();
}

2) 链表实现

public class LinkedListStack<E> implements Stack<E>, Iterable<E> {

    private final int capacity;
    private int size;
    private final Node<E> head = new Node<>(null, null);

    public LinkedListStack(int capacity) {
        this.capacity = capacity;
    }

    @Override
    public boolean push(E value) {
        if (isFull()) {
            return false;
        }
        head.next = new Node<>(value, head.next);
        size++;
        return true;
    }

    @Override
    public E pop() {
        if (isEmpty()) {
            return null;
        }
        Node<E> first = head.next;
        head.next = first.next;
        size--;
        return first.value;
    }

    @Override
    public E peek() {
        if (isEmpty()) {
            return null;
        }
        return head.next.value;
    }

    @Override
    public boolean isEmpty() {
        return head.next == null;
    }

    @Override
    public boolean isFull() {
        return size == capacity;
    }

    @Override
    public Iterator<E> iterator() {
        return new Iterator<E>() {
            Node<E> p = head.next;
            @Override
            public boolean hasNext() {
                return p != null;
            }

            @Override
            public E next() {
                E value = p.value;
                p = p.next;
                return value;
            }
        };
    }

    static class Node<E> {
        E value;
        Node<E> next;

        public Node(E value, Node<E> next) {
            this.value = value;
            this.next = next;
        }
    }
}

3) 数组实现

public class ArrayStack<E> implements Stack<E>, Iterable<E>{
    private final E[] array;
    private int top = 0;

    @SuppressWarnings("all")
    public ArrayStack(int capacity) {
        this.array = (E[]) new Object[capacity];
    }

    @Override
    public boolean push(E value) {
        if (isFull()) {
            return false;
        }
        array[top++] = value;
        return true;
    }

    @Override
    public E pop() {
        if (isEmpty()) {
            return null;
        }
        return array[--top];
    }

    @Override
    public E peek() {
        if (isEmpty()) {
            return null;
        }
        return array[top-1];
    }

    @Override
    public boolean isEmpty() {
        return top == 0;
    }

    @Override
    public boolean isFull() {
        return top == array.length;
    }

    @Override
    public Iterator<E> iterator() {
        return new Iterator<E>() {
            int p = top;
            @Override
            public boolean hasNext() {
                return p > 0;
            }

            @Override
            public E next() {
                return array[--p];
            }
        };
    }
}

4) 应用

模拟如下方法调用

public static void main(String[] args) {
    System.out.println("main1");
    System.out.println("main2");
    method1();
    method2();
    System.out.println("main3");
}

public static void method1() {
    System.out.println("method1");
    method3();
}

public static void method2() {
    System.out.println("method2");
}

public static void method3() {
    System.out.println("method3");
}

模拟代码

public class CPU {
    static class Frame {
        int exit;

        public Frame(int exit) {
            this.exit = exit;
        }
    }
    static int pc = 1; // 模拟程序计数器 Program counter
    static ArrayStack<Frame> stack = new ArrayStack<>(100); // 模拟方法调用栈

    public static void main(String[] args) {
        stack.push(new Frame(-1));
        while (!stack.isEmpty()) {
            switch (pc) {
                case 1 -> {
                    System.out.println("main1");
                    pc++;
                }
                case 2 -> {
                    System.out.println("main2");
                    pc++;
                }
                case 3 -> {
                    stack.push(new Frame(pc + 1));
                    pc = 100;
                }
                case 4 -> {
                    stack.push(new Frame(pc + 1));
                    pc = 200;
                }
                case 5 -> {
                    System.out.println("main3");
                    pc = stack.pop().exit;
                }
                case 100 -> {
                    System.out.println("method1");
                    stack.push(new Frame(pc + 1));
                    pc = 300;
                }
                case 101 -> {
                    pc = stack.pop().exit;
                }
                case 200 -> {
                    System.out.println("method2");
                    pc = stack.pop().exit;
                }
                case 300 -> {
                    System.out.println("method3");
                    pc = stack.pop().exit;
                }
            }
        }
    }
}

习题

E01. 有效的括号-Leetcode 20

一个字符串中可能出现 [] (){} 三种括号,判断该括号是否有效

有效的例子

()[]{}

([{}])

()

无效的例子

[)

([)]

([]

思路

  • 遇到左括号, 把要配对的右括号放入栈顶
  • 遇到右括号, 若此时栈为空, 返回 false,否则把它与栈顶元素对比
    • 若相等, 栈顶元素弹出, 继续对比下一组
    • 若不等, 无效括号直接返回 false
  • 循环结束
    • 若栈为空, 表示所有括号都配上对, 返回 true
    • 若栈不为空, 表示右没配对的括号, 应返回 false

答案(用到了课堂案例中的 ArrayStack 类)

public boolean isValid(String s) {
    ArrayStack<Character> stack = new ArrayStack<>(s.length() / 2 + 1);
    for (int i = 0; i < s.length(); i++) {
        char c = s.charAt(i);
        if (c == '(') {
            stack.push(')');
        } else if (c == '[') {
            stack.push(']');
        } else if (c == '{') {
            stack.push('}');
        } else {
            if (!stack.isEmpty() && stack.peek() == c) {
                stack.pop();
            } else {
                return false;
            }
        }
    }
    return stack.isEmpty();
}
E02. 后缀表达式求值-Leetcode 120

后缀表达式也称为逆波兰表达式,即运算符写在后面

  • 从左向右进行计算
  • 不必考虑运算符优先级,即不用包含括号

示例

输入:tokens = ["2","1","+","3","*"]
输出:9
即:(2 + 1) * 3

输入:tokens = ["4","13","5","/","+"]
输出:6
即:4 + (13 / 5)

题目假设

  • 数字都视为整数
  • 数字和运算符个数给定正确,不会有除零发生

代码

public int evalRPN(String[] tokens) {
    LinkedList<Integer> numbers = new LinkedList<>();
    for (String t : tokens) {
        switch (t) {
            case "+" -> {
                Integer b = numbers.pop();
                Integer a = numbers.pop();
                numbers.push(a + b);
            }
            case "-" -> {
                Integer b = numbers.pop();
                Integer a = numbers.pop();
                numbers.push(a - b);
            }
            case "*" -> {
                Integer b = numbers.pop();
                Integer a = numbers.pop();
                numbers.push(a * b);
            }
            case "/" -> {
                Integer b = numbers.pop();
                Integer a = numbers.pop();
                numbers.push(a / b);
            }
            default -> numbers.push(Integer.parseInt(t));
        }
    }
    return numbers.pop();
}
E03. 中缀表达式转后缀
public class E03InfixToSuffix {
    /*
        思路
        1. 遇到数字, 拼串
        2. 遇到 + - * /
            - 优先级高于栈顶运算符 入栈
            - 否则将栈中高级或平级运算符出栈拼串, 本运算符入栈
        3. 遍历完成, 栈中剩余运算符出栈拼串
            - 先出栈,意味着优先运算
        4. 带 ()
            - 左括号直接入栈
            - 右括号要将栈中直至左括号为止的运算符出栈拼串

        |   |
        |   |
        |   |
        _____

        a+b
        a+b-c
        a+b*c
        a*b+c
        (a+b)*c

     */
    public static void main(String[] args) {
        System.out.println(infixToSuffix("a+b"));
        System.out.println(infixToSuffix("a+b-c"));
        System.out.println(infixToSuffix("a+b*c"));
        System.out.println(infixToSuffix("a*b-c"));
        System.out.println(infixToSuffix("(a+b)*c"));
        System.out.println(infixToSuffix("a+b*c+(d*e+f)*g"));
    }

    static String infixToSuffix(String exp) {
        LinkedList<Character> stack = new LinkedList<>();
        StringBuilder sb = new StringBuilder(exp.length());
        for (int i = 0; i < exp.length(); i++) {
            char c = exp.charAt(i);
            switch (c) {
                case '+', '-', '*', '/' -> {
                    if (stack.isEmpty()) {
                        stack.push(c);
                    } else {
                        if (priority(c) > priority(stack.peek())) {
                            stack.push(c);
                        } else {
                            while (!stack.isEmpty() 
                                   && priority(stack.peek()) >= priority(c)) {
                                sb.append(stack.pop());
                            }
                            stack.push(c);
                        }
                    }
                }
                case '(' -> {
                    stack.push(c);
                }
                case ')' -> {
                    while (!stack.isEmpty() && stack.peek() != '(') {
                        sb.append(stack.pop());
                    }
                    stack.pop();
                }
                default -> {
                    sb.append(c);
                }
            }
        }
        while (!stack.isEmpty()) {
            sb.append(stack.pop());
        }
        return sb.toString();
    }

    static int priority(char c) {
        return switch (c) {
            case '(' -> 0;
            case '*', '/' -> 2;
            case '+', '-' -> 1;
            default -> throw new IllegalArgumentException("不合法字符:" + c);
        };
    }
}
E04. 双栈模拟队列-Leetcode 232

给力扣题目用的自实现栈,可以定义为静态内部类

class ArrayStack<E> {

    private E[] array;
    private int top; // 栈顶指针

    @SuppressWarnings("all")
    public ArrayStack(int capacity) {
        this.array = (E[]) new Object[capacity];
    }

    public boolean push(E value) {
        if (isFull()) {
            return false;
        }
        array[top++] = value;
        return true;
    }

    public E pop() {
        if (isEmpty()) {
            return null;
        }
        return array[--top];
    }

    public E peek() {
        if (isEmpty()) {
            return null;
        }
        return array[top - 1];
    }

    public boolean isEmpty() {
        return top == 0;
    }

    public boolean isFull() {
        return top == array.length;
    }
}

参考解答,注意:题目已说明

  • 调用 push、pop 等方法的次数最多 100
public class E04Leetcode232 {

    /*
        队列头      队列尾
        s1       s2
        顶   底   底   顶
                 abc

        push(a)
        push(b)
        push(c)
        pop()
     */
    ArrayStack<Integer> s1 = new ArrayStack<>(100);
    ArrayStack<Integer> s2 = new ArrayStack<>(100);

    public void push(int x) {
        s2.push(x);
    }

    public int pop() {
        if (s1.isEmpty()) {
            while (!s2.isEmpty()) {
                s1.push(s2.pop());
            }
        }
        return s1.pop();
    }

    public int peek() {
        if (s1.isEmpty()) {
            while (!s2.isEmpty()) {
                s1.push(s2.pop());
            }
        }
        return s1.peek();
    }

    public boolean empty() {
        return s1.isEmpty() && s2.isEmpty();
    }

}
E05. 单队列模拟栈-Leetcode 225

给力扣题目用的自实现队列,可以定义为静态内部类

public class ArrayQueue3<E> {

    private final E[] array;
    int head = 0;
    int tail = 0;

    @SuppressWarnings("all")
    public ArrayQueue3(int c) {
        c -= 1;
        c |= c >> 1;
        c |= c >> 2;
        c |= c >> 4;
        c |= c >> 8;
        c |= c >> 16;
        c += 1;
        array = (E[]) new Object[c];
    }
    
    public boolean offer(E value) {
        if (isFull()) {
            return false;
        }        
        array[tail & (array.length - 1)] = value;
        tail++;
        return true;
    }

    public E poll() {
        if (isEmpty()) {
            return null;
        }
        E value = array[head & (array.length - 1)];
        head++;
        return value;
    }

    public E peek() {
        if (isEmpty()) {
            return null;
        }
        return array[head & (array.length - 1)];
    }

    public boolean isEmpty() {
        return head == tail;
    }

    public boolean isFull() {
        return tail - head == array.length;
    }
}

参考解答,注意:题目已说明

  • 调用 push、pop 等方法的次数最多 100
  • 每次调用 pop 和 top 都能保证栈不为空
public class E05Leetcode225 {
    /*
        队列头     队列尾
        cba
        顶           底

        queue.offer(a)
        queue.offer(b)
        queue.offer(c)
     */
    ArrayQueue3<Integer> queue = new ArrayQueue3<>(100);
    int size = 0;
    public void push(int x) {
        queue.offer(x);
        for (int i = 0; i < size; i++) {
            queue.offer(queue.poll());
        }
        size++;
    }

    public int pop() {
        size--;
        return queue.poll();
    }

    public int top() {
        return queue.peek();
    }

    public boolean empty() {
        return queue.isEmpty();
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个不回家的男人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值