自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

CAD之路

啥时候能从小白变大神啊啊啊~

原创 医学图像分析领域的会议与期刊信息

国际上逐步形成了两个知名的医学图像分析领域学术会议:一个是MICCAI( Medical Image Computing and Computer Assisted Intervention) ,侧重于讨论与临床应用相结合的医学图像分析技术和应用;另一个是IPMI( Information Processing in Medical maging) ,侧重于讨论信息处理和模式识别技术在医学图像处理中的应用。这两个会议聚集了很多医学图像分析领域的国际知名专家,反映了该领域的最新动态。在期刊方面,.

2020-05-19 19:02:37 333

转载 机器学习之正则化(Regularization)

1. The Problem of Overfitting1还是来看预测房价的这个例子,我们先对该数据做线性回归,也就是左边第一张图。如果这么做,我们可以获得拟合数据的这样一条直线,但是,实际上这并不是一个很好的模型。我们看看这些数据,很明显,随着房子面积增大,住房价格的变化趋于稳定或者说越往右越平缓。因此线性回归并没有很好拟合训练数据。我们把此类情况称为欠拟合(underf...

2018-12-14 12:23:20 192 2

转载 协方差与相关系数

协方差与相关系数 协方差 二维随机变量(X,Y),X与Y之间的协方差定义为:Cov(X,Y)=E{[X-E(X)][Y-E(Y)]}其中:E(X)为分量X的期望,E(Y)为分量Y的期望 协方差Cov(X,Y)是描述随机变量相互关联程度的一个特征数。从协方差的定义可以看出,它是X的偏差【X-E(X)】与Y的偏差【Y-E(Y)】的乘积的数学期望。由于偏差可正可负,因此协...

2018-12-04 18:31:33 163

转载 降维工具箱drtool

工具箱下载:http://leelab.googlecode.com/svn/trunk/apps/drtoolbox/————————————————————————————————————————————参考:https://chunqiu.blog.ustc.edu.cn/?p=413  这个工具箱的主页如下,现在的最新版本是2013.3.21更新,版本v0.8.1bhttp...

2018-12-04 15:01:35 348 1

转载 SVM技术贴集合

http://www.blogjava.net/zhenandaci/category/31868.html

2018-12-03 20:31:45 177

转载 解决多标签分类问题(包括案例研究)

由于某些原因,回归和分类问题总会引起机器学习领域的大部分关注。多标签分类在数据科学中是一个比较令人头疼的问题。在这篇文章中,我将给你一个直观的解释,说明什么是多标签分类,以及如何解决这个问题。1.多标签分类是什么?让我们来看看下面的图片。如果我问你这幅图中有一栋房子,你会怎样回答? 选项为“Yes”或“No”。或者这样问,所有的东西(或标签)与这幅图有什么关系?在这些类...

2018-11-08 14:44:47 674

转载 从二分类到多分类的迁移策略

一般情况下问题研究为二分类问题,在解决多分类问题时有时可以直接推广到多分类,有时不能,不能推广的时候主要用三种拆分策略对问题进行研究一对一的策略给定数据集DD这里有NN个类别,这种情况下就是将这些类别两两配对,从而产生N(N−1)/2个二分类任务,在测试的时候把样本交给这些分类器,然后进行投票一对其余策略将每一次的一个类作为正例,其余作为反例,总共训练NN个分类器。测试的时候若仅有一个...

2018-11-08 14:44:18 355

转载 分类问题-----多标签(multilabel)、多类别(multiclass)

转自:大致上,解决multilabel的方法有两种1)转化问题。把问题转化为一个或多个单目标分类问题,或是回归问题。2)算法适应。修改学习算法使得能直接处理multilabel的数据。问题转化方法 dubbed PTx法。包括PT1 对有多标签的数据随机选取一个标签   PT2 直接把标签数大于1的都丢掉   PT3 对标签集合进行排列组合,即组合好的成为一个新...

2018-11-08 14:13:27 3182

转载 ROC曲线详解及matlab绘图实例

在信号检测理论中,接收者操作特征曲线(receiver operating characteristic curve,或者叫ROC曲线)是一种坐标图式的分析工具,用于 (1) 选择最佳的信号侦测模型、舍弃次佳的模型。 (2) 在同一模型中设定最佳阈值。在做决策时,ROC分析能不受成本/效益的影响,给出客观中立的建议。ROC曲线首先是由二战中的电子工程师和雷达工程师发明的,用来侦测战场上的敌...

2018-11-08 11:53:59 7522 1

转载 AUC计算方法总结

一、roc曲线1、roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性。横轴:负正类率(false postive rate FPR)特异度,划分实例中所有负例占所有负例的比例;(1-Specificity)纵轴:真正类率(true postive rate TPR)灵敏度,Sensitivity...

2018-11-08 11:41:43 267

转载 ROC和AUC介绍以及如何计算AUC

ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,对两者的简单介绍见这里。这篇博文简单介绍ROC和AUC的特点,以及更为深入地,讨论如何作出ROC曲线图以及计算AUC。ROC曲线需要提前说明的是,我们这里只讨论二值分类器。对于分类器,或者说分类算法,评价指标主要有precision...

2018-11-08 11:01:46 230

转载 如何写好一篇科技论文?

文是研究者和整个学术界交流最重要的方式,其重要性强调再多也不为过。如何通过写作的方式将自己的想法、方法和科学发现以“简洁易懂、准确无误”地传达给读者,需要极为深厚的功力。笔者写本文的目的绝不是在吹嘘我是一个多好的写作者,恰恰相反,我的写作水平很差,包括表达能力、沟通能力都还需要进一步提高。我希望以写文章的方式总结写一篇好论文的要点,以便经常反省。如果你发现这篇文章恰好对你也有帮助,那再好不过了...

2018-11-08 10:54:57 2670

转载 机器学习之分类性能度量指标 : ROC曲线、AUC值、正确率、召回率

在分类任务中,人们总是喜欢基于错误率来衡量分类器任务的成功程度。错误率指的是在所有测试样例中错分的样例比例。实际上,这样的度量错误掩盖了样例如何被分错的事实。在机器学习中,有一个普遍适用的称为混淆矩阵(confusion matrix)的工具,它可以帮助人们更好地了解分类中的错误。比如有这样一个在房子周围可能发现的动物类型的预测,这个预测的三类问题的混淆矩阵如下表所示:一个三类问题的混...

2018-11-08 10:48:04 354

转载 机器学习-浅谈模型评估的方法和指标

以处理流程为骨架来学习方便依照框架的充实细节又不失概要(参考下图机器学习处理流程的一个实例<<Python数据分析与挖掘实战>>),今天就充实一下模型评估(模型评价)的部分吧.图-1-机器学习处理流程实例 本"故事"以<<Python数据分析与挖掘实战>>中预测用户是否窃漏电的例子来展开,自问自答,为什么要评估和怎么评估,具体的概念在...

2018-11-08 08:50:22 515

转载 什么是 ROC AUC

本文结构:什么是 ROC? 怎么解读 ROC 曲线? 如何画 ROC 曲线? 代码? 什么是 AUC? 代码?ROC 曲线和 AUC 常被用来评价一个二值分类器的优劣。先来看一下混淆矩阵中的各个元素,在后面会用到:1. ROC :纵轴为 TPR 真正例率,预测为正且实际为正的样本占所有正例样本的比例。横轴为 FPR 假正例率,预测为正但实际为负的样本占所有负例样本...

2018-11-08 08:47:38 541

转载 准确率(accuracy),精确率(Precision),召回率(Recall)和综合评价指标(F1-Measure )

自然语言处理(ML),机器学习(NLP),信息检索(IR)等领域,评估(evaluation)是一个必要的工作,而其评价指标往往有如下几点:准确率(accuracy),精确率(Precision),召回率(Recall)和F1-Measure。本文将简单介绍其中几个概念。中文中这几个评价指标翻译各有不同,所以一般情况下推荐使用英文。 现在我先假定一个具体场景作为例子:假如某个班级...

2018-11-07 14:04:24 1452

转载 分类指标准确率(Precision)和正确率(Accuracy)的区别

第一个字母T和F代表true和false,是形容词。第二个字母代表P和N阴性阳性,positive和negative,是预测结果。所以现在翻译一下:TP: true positive, 正确的阳性,说明预测是阳性,而且预测对了,那么实际也是正例。TN: true negative, 正确的阴性,说明预测是阴性,而且预测对了,那么实际也是负例。FP: false positive, 假...

2018-11-07 08:55:21 3578

转载 聊聊我的R语言学习路径和感受

作者:刘顺祥个人微信公众号:每天进步一点点2015 第一次接触R语言是我读研的时候,算到现在有5年多了。R语言可以算得上是我进入编程世界的启蒙语言,尽管在大学期间为了考试而被迫学习过计算机二级,但那真心是没有一丁点的兴趣可言。进入R的世界后,真的越来越喜欢,可以帮助我解决学术研究过程中的很多探索,最起码读研期间的所有小论文和毕业论文的案例分析都是通过R语言完成的。工作后,数据分析、可视...

2018-11-03 20:18:56 571

转载 DICOM医学图像处理:全面分析DICOM3.0标准中的通讯服务模块

背景:        最近在做关于PACS终端与RIS系统之间进行worklist查询的相关调试工作,因此又重新对DICOM3.0标准中关于网络传输的部分进行了阅读,在此将本周的工作进行一下总结,以加深对DICOM3.0标准的认识,从底层更加清晰的了解worklist查询、C-STORE、C-FIND等各种服务。要点:1)名词简称        该部分中会出现很多的常见名词的缩写,...

2018-09-11 09:47:45 245

转载 DICOM医学图像处理:DICOM网络传输

背景:        专栏取名为DICOM医学图像处理原因是:博主是从医学图像处理算法研究时开始接触DICOM协议的。当初认识有局限性,认为DICOM只是一个简单的文件格式约定,简而言之,我当时认为DICOM协议就是扩展名为DCM文件的格式说明。其实不然,随着对医疗行业的深入,对DICOM协议也有了更全面的认识。而今才发现DCM文件只是DICOM协议一部分中的一小节,仅仅是整个协议中的一个数据...

2018-09-11 08:46:32 1226

转载 DICOM3.0标准的特点

DICOM3.0标准是医学信息通信领域的国际标准协议,它的突出特点有:(1)DICOM3.0协议是一种基于TCP/IP的上层网络协议DICOM协议处于OSI开放系统互连七层协议的上三层,即会话层、表示层和应用层的位置,而在七层协议的下层主要使用TCP/IP协议所提供的服务。DICOM协议要求在数据的编码、传输之前,必须先进行连接协商以确认双方同意某些特定的条件,可以完成特定的通信功能。DI...

2018-09-11 08:44:58 495

转载 DICOM协议新手入门资料-DICOM协议详细解释

数字影像传输标准协议的初衷,是为了在不同厂商生产的数字影像设备之间实现影像及其附属信息的调用。这个标准的最初版本是所谓ACR(美国放射学会)-NEMA(全国电器设备制造商协会)标准,这个标准定义了点对点的连接协议。但是计算机网络技术的日新月异和PACS(影像传输及归档系统)的发展,很快就让这个协议显得捉襟见肘。其结果是以后的工作目标变成了对ACR-NEMA标准的升级,以使此标准能够支持复杂网络系统...

2018-09-11 08:44:16 944

转载 DICOM入门简介

    DICOM是所有从事医学影像处理的工作者需要了解的最基本的图像格式。这里摘抄一篇关于DICOM简介较为详细的文章,我也可以常常浏览,以达到温故而知新的目的。        文章来源:        http://www.cnblogs.com/okaimee/archive/2010/05/31/1748514.html 1.       Dicom简介:1.1  Di...

2018-09-11 08:43:28 313

转载 图像边缘检测经典算子及MATLAB实现

一、边缘检测边缘是图象最基本的特征. 边缘检测在计算机视觉、图象分析等应用中起着重要的作用,是图象分析与识别的重要环节,这是因为子图象的边缘包含了用于识别的有用信息. 所以边缘检测是图像分析和模式识别的主要特征提取手段。所谓边缘是指其周围像素灰度后阶变化或屋顶状变化的那些像素的集合,它存在于目标与背景、目标与目标、区域与区域,基元与基元之间。 因此它是图象分割所依赖的重要的特征,也是纹理特

2017-09-28 08:07:55 1876

转载 医学图像处理:基于标记的分水岭分割算法及算法评估

在医学图像处理中,分割占据很大一部分比重,下面简单说下医学图像分割的评估算法

2017-09-28 08:03:01 715

转载 我爱机器学习网机器学习类别文章汇总

机器学习领域的几种主要学习方式From Stumps to Trees to ForestsKDD-2014 – The Biggest, Best, and Booming Data Science Meeting前景目标检测1(总结)行人检测5 Tips for Predictive Modeling SuccessSibyl: Google’s

2017-09-26 18:15:09 1667

转载 开源网站:代码搜索网站

http://search.csdn.net/CSDN搜索,CSDN还是有非常多的编程资源的,用它的搜索能搜出不少东西。代码类别也比较全面。http://snippets.org/简单实用的代码收集网站,强力推荐。比如你要找个DES加密,要找个数据压缩,找个INI文件操作的C代码等,均能手到擒来。http://www.codase.com/index.html它是一个代码搜索引

2017-09-26 18:14:29 3811

转载 非码农也能看懂的“机器学习”原理

我们先来说个老生常谈的情景:某天你去买芒果,小贩摊了满满一车芒果,你一个个选好,拿给小贩称重,然后论斤付钱。自然,你的目标是那些最甜最成熟的芒果,那怎么选呢?你想起来,啊外婆说过,明黄色的比淡黄色的甜。你就设了条标准:只选明黄色的芒果。于是按颜色挑好、付钱、回家。啊哈,人生完整了?呵呵呵。告诉你吧人生就是各种麻烦等你回到家,尝了下芒果。有些确实挺甜,有些就不行了。额

2017-09-03 10:24:32 684

转载 分类器设计之线性分类器和线性SVM(含Matlab代码)

对于高维空间的两类问题,最直接的方法是找到一个最佳的分类超平面,使得并且,对于所有的正负训练样本和. 因此,以上问题可以表达为:0,i=1,....,n& \\ &&&w^Ty_j+b问题P0可以转化为0& \end{align*}" alt="" style="border:none; max-width:100%">两边除以\epsilon,并且

2017-09-01 18:10:53 2462

转载 模式识别: 线性分类器

一、实验目的和要求目的:了解线性分类器,对分类器的参数做一定的了解,理解参数设置对算法的影响。 要求:1. 产生两类样本2. 采用线性分类器生成出两类样本的分类面3. 对比线性分类器的性能,对比参数设置的结果二、实验环境、内容和方法环境:windows 7,matlab R2010a内容:通过实验,对生成的实验数据样本

2017-09-01 18:09:22 435

转载 一种基于凸优化的图像去噪方法演示

本文介绍一种基于凸优化的图像去噪方法。 该方法采用L1范数来衡量图像的平滑度,即能滤除澡声,又能最大限度地保存图像的边缘。 模型如下: 其中f(x)为差分矩阵,存放了X每个元素与其4邻域的差值。 I为输入的灰度图像。 对于三通道彩色图像,可对每个通道进行单独处理。gamma为权重,值趣大则图像越平滑。上述模型为无约束的最小化问题 ,用线性规化可解。 在这

2017-09-01 18:06:05 1234

转载 当我们在谈论机器学习时我们到底在谈些什么

深度学习最近两年在音频分析,视频分析,游戏博弈等问题上取得了巨大的成果。由于微软,谷歌等科技巨头的推动及应用上的可见突破,使得深度学习成为目前学术界和工业界的超热门话题。包括国内很多公司也乐见其成,适时宣布自己的产品或算法也拥抱了深度学习。不过对于具体如何使用,达到了什么效果等问题讳莫如深。事实上,关于深度学习的大量研究成果在上世纪已经完成,包括卷积神经网络(CNN)、长短时记忆网络(LS

2017-08-30 16:19:24 619

转载 近200篇机器学习&深度学习资料分享(含各种文档,视频,源码等)

编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等。而且原文也会不定期的更新,望看到文章的朋友能够学到更多。《Brief History of Machine Learning》介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机、神经网络、决策树、SVM、Adaboost 到随机森林、Deep Learning.《Deep Learnin

2017-08-30 16:17:40 6048

转载 深度学习与计算机视觉 看这一篇就够了

人工智能是人类一个非常美好的梦想,跟星际漫游和长生不老一样。我们想制造出一种机器,使得它跟人一样具有一定的对外界事物感知能力,比如看见世界。在上世纪50年代,数学家图灵提出判断机器是否具有人工智能的标准:图灵测试。即把机器放在一个房间,人类测试员在另一个房间,人跟机器聊天,测试员事先不知道另一房间里是人还是机器 。经过聊天,如果测试员不能确定跟他聊天的是人还是机器的话,那么图灵测试就通

2017-08-30 16:11:27 502

转载 【机器学习】 Matlab 2015a 自带机器学习算法汇总

【引言】今天突然发现MATLAB 2015a的版本自带了许多经典的机器学习方法,简单好用,所以在此撰写博客用以简要汇总(我主要参考了MATLAB自带的帮助文档)。MATLAB每个机器学习方法都有很多种方式实现,并可进行高级配置(比如训练决策树时设置的各种参数),这里由于篇幅的限制,不再详细描述。我仅列出我认为的最简单的使用方法。详细使用方法,请按照我给出的函数名,在MATLAB中使用如下命

2017-08-15 22:42:17 1197

转载 [大神贴]卷积:如何成为一个很厉害的神经网络

什么是卷积神经网络?又为什么很重要?卷积神经网络(Convolutional Neural Networks, ConvNets or CNNs)是一种在图像识别与分类领域被证明特别有效的神经网络。卷积网络已经成功地识别人脸、物体、交通标志,应用在机器人和无人车等载具。图1在上面的图1当中,卷积网络能够识别场景而系统可以自动推荐相关标签如“桥”、“铁路”、“网球”等。图2则展示了卷积网

2017-05-09 08:49:24 1186

转载 入门级攻略:机器学习 VS. 深度学习

楔子:     机器学习和深度学习现在很火,你会发现突然间很多人都在谈论它们。如下图所示,机器学习和深度学习的趋势对比(来自Google trend,纵轴表示搜索热度):  本文将会以简单易懂的语言及示例为大家详细解释深度学习和机器学习的区别,并介绍相关用途。机器学习和深度学习简介机器学习     Tom Mitchell 关于机器学习的定义被广

2017-05-05 17:23:50 1154

转载 公开的海量数据集 Public Research-Quality Datasets

海量数据(又称大数据)已经成为各大互联网企业面临的最大问题,如何处理海量数据,提供更好的解决方案,是目前相当热门的一个话题。类似MapReduce、 Hadoop等架构的普遍推广,大家都在构建自己的大数据处理,大数据分析平台。 相应之下,目前对于海量数据处理人才的需求也在不断增多,此类人才可谓炙手可热!越来越多的开发者把目光转移到海量数据的处理上。但是不是所有人都能真正接触到,或者有机

2017-05-05 16:37:32 287

转载 干货|如何调试神经网络(深度神经网络)?

神经网络的调试基本上难于绝大多数的程序,因为大部分的神经网络的错误不会以类型错误或运行时错误显现,他们只是使得网络难以收敛。如果你是一个新人,这可能会让你非常沮丧。一个有经验的网络训练者可以系统的克服这些困难,尽管存在着大量似是而非的错误信息,比如:你的网络训练的不太好。对缺少经验的人来说,这个信息令人却步;但对有经验的人来说,这是一个非常好的错误消息。它意味着样板

2017-05-05 16:36:05 208

转载 深度学习在图像识别中的研究进展与展望

深度学习是近十年来人工智能领域取得的最重要的突破之一。它在语音识别、自然语言处理、计算机视觉、图像与视频分析、多媒体等诸多领域都取得了巨大成功。本文将重点介绍深度学习在物体识别、物体检测、视频分析的最新研究进展,并探讨其发展趋势。1. 深度学习发展历史的回顾现有的深度学习模型属于神经网络。神经网络的历史可追述到上世纪四十年代,曾经在八九十年代流行。神经网络试图通过模拟大脑认知的机理

2017-05-05 16:33:25 3537

提示
确定要删除当前文章?
取消 删除