本人股市多年的老韭菜,各种股票分析书籍,技术指标书籍阅历无数,萌发想法,何不自己开发个股票预测分析软件,选择python因为够强大,它提供了很多高效便捷的数据分析工具包,
我们已经初步的接触与学习其中数据分析中常见的3大利器---Numpy,Pandas,Matplotlib库。
也简单介绍一下数据获取的二种方法,通过金融数据接口和爬虫获取。
既然有了数据,python知识也入门了。那么重点要对这些数据分析,来预测股票的未来的大概率走势,让我们这些韭菜们心里有底。
(1)指标有用论
相信技术指标有用论是我们能开发这套股票预测系统的最大的信念和动力。
有一句名言:股市没有新鲜事,不可能有的。投机向群山一样古老,亘古长存,从未改变。股市上今天发生的事,过去曾经发生过,将来还会在此发生。
对过去的数据进行技术分析来预测未来的走势从概率学,统计学,数学的角度是完全科学和可实施的,所以才会有各种的技术指标,算法分析等等。
那么问题来了,股市小散看过各种技术书籍,各种技术指标难记于心的不乏少数,但是市场永远是二八定律,技术指标在手,亏的人远远占大多数。
道理很简单,技术指标不会骗人,程序不会骗人,但是股市是这个世界上最复杂,最具欺骗性的博弈游戏,既然所有技术指标都是根据以往的数据进行计算来预测未来,庄家可以利用大量资金技术和时间来做出虚假技术指标来骗小散入局,简称骗线,还有重要的一点,股市是对人性最大的考验,所有的技术指标不能100%的预测未来,胜算概率超过6成已经很完美了,这也是量化交易大行其道,机器没有感情,按照算法自动交易,挣钱肯定大于亏钱。
(2)编写股票分析挖掘软件核心目的
目前市场上各种交易预测软件汗牛充栋,包括证劵交易软件上kdj,macd,bill,ma等几十种技术指标已经相当完善。 但是用的人多了,盈亏还是二八定律,那就做点交易软件上没有的,增加胜算概率。
代码满足以下条件
(1)多指标共振
比如macd,kdj,boll,ma,lstm算法,线性回归算法同时预测买卖点。因为庄家多个指标同时做到骗线,难度大
(2)量价优先
量是所有指标的前提,股票交易如果每天冷冷清清,那么所有指标是不可靠的,量起来代表股票开始活跃了
(3)背离共振
多个指标有背离,比金叉死叉更加真实
(4)AI算法加持
线性回归算法,贝叶斯算法,lstm长短期记忆神经网络进行数据训练预测
注:只有满足上述大部分条件的股票再纳入自选股票池,当然,这是我个人对技术指标分析的浅薄看法,在测试和使用过程中不断调整算法来最大限度增加预测胜算概率,不足之处欢迎大家交流
(3)常见技术指标
技术指标总几十种,简单的介绍一下几个常见的
(1)指标之王MACD
MACD(Moving Average Convergence / Divergence),平滑异同平均线。是利用收盘价的短期(常用为12日)指数移动平均线与长期(常用为26日)指数移动平均线之间的聚合与分离状况,对买进、卖出时机作出研判的技术指标。
MACD指标是最著名的趋势性指标,其主要特点是稳健性,这种指标不过度灵敏的特性对短线而言固然有过于缓慢的缺点,但正如此也决定其能在周期较长、数据数目较多行情中给出相对稳妥的趋势指向。