本次小记,提供了一份基于pytorch的AlexNet卷积神经网络模型的代码。除此之外,对代码中不容易理解的部分进行了讲解。
本代码的平台是PyCharm 2024.1.3,python版本3.11 numpy版本是1.26.4,pytorch版本2.0.0+cu118
模型训练的详细代码如下:
import torch
from torch import nn
import numpy as np
import time
from torchvision.datasets import CIFAR10
# 数据获取
def data_treating(x):
x = np.array(x, dtype='float32') / 255
x = (x - 0.5) / 0.5 #
x = x.transpose((2, 0, 1))
x = torch.from_numpy(x)
return x
train_set = CIFAR10('./data', train=True, transform=data_treating)
train_data = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)
# 数据模型定义
class AlexNet(nn.Module):
def __init__(self):
super().__init__()
# 第一层3*3的卷积,输入的 channels是3,输出的channels是64,步长是1,没有填充
self.conv1 = nn.Sequential(nn.Conv2d(3,64,3,1),
nn.ReLU(True))
# 第二层4*4的池化,步长是2,没有填充
self.max_pool1 = nn.MaxPool2d(4, 2)
# 第三层3*3的卷积,输入的 channels是64,输出的channels是64,步长是1,没有填充
self.conv2 = nn.Sequential(nn.Conv2d(64,256,3,1),
nn.ReLU(True))
# 第四层是4