Pytorch 小记 第六回:AlexNet卷积神经网络模型代码

本次小记,提供了一份基于pytorch的AlexNet卷积神经网络模型的代码。除此之外,对代码中不容易理解的部分进行了讲解。
本代码的平台是PyCharm 2024.1.3,python版本3.11 numpy版本是1.26.4,pytorch版本2.0.0+cu118

模型训练的详细代码如下:

import torch
from torch import nn
import numpy as np
import time
from torchvision.datasets import CIFAR10


# 数据获取
def data_treating(x):
    x = np.array(x, dtype='float32') / 255
    x = (x - 0.5) / 0.5  #
    x = x.transpose((2, 0, 1))  
    x = torch.from_numpy(x)
    return x


train_set = CIFAR10('./data', train=True, transform=data_treating)
train_data = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)


# 数据模型定义
class AlexNet(nn.Module):
    def __init__(self):
        super().__init__()
        # 第一层3*3的卷积,输入的 channels是3,输出的channels是64,步长是1,没有填充
        self.conv1 = nn.Sequential(nn.Conv2d(3,64,3,1),
                                   nn.ReLU(True))
        # 第二层4*4的池化,步长是2,没有填充
        self.max_pool1 = nn.MaxPool2d(4, 2)
        # 第三层3*3的卷积,输入的 channels是64,输出的channels是64,步长是1,没有填充
        self.conv2 = nn.Sequential(nn.Conv2d(64,256,3,1),
                                   nn.ReLU(True))
        # 第四层是4
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值