通过布莱克-斯科尔斯-默顿模型,不难发现有5个变量会影响期权的价格:一是当前基础资产价格S,二是期权的执行价格K,三是期权期限T,四是基础资产的波动率;五是无风险收益率r。下面主要针对当其中一个变量发生变化并且假定其他变量保持不变时,观察其对于期权价格的影响。
利用刚才工商银行股票期权作为分析对象,通过 Python 演示期权价格与基础资产(股票)价格、期权执行价格、波动率、无风险收益率、期限等变量之间的关系。
1. 期权价格与基础资产价格的关系
假设一个工商银行股票期权信息,对股票价格设定一个取值是在区间[5,7]的等差数列,其他的变量取值保持不变,运用布莱克斯科尔斯默顿模型对期权进行定价,从而模拟期权价格与基础资产价格变动之间的关系。
S_list = np.linspace(5.0, 7.0, 100) #基础资产价格数组
call_list1 = call_BS(S=S_list, K=6, sigma=0.24, r=0.04, T=0.5) #计算看涨期权价格数组
put_list1 = put_BS(S=S_list, K=6, sigma=0.24, r=0.04, T=0.5) #计算看跌期权价格数组
plt.figure(figsize=(8, 6))
plt.plot(S_list, call_list1, 'b-', label='看期权', lw=2.5)
plt.plot(S_list, put_list1, 'r-', label='看跌期权', lw=2.5)
plt.ylabel('期权价格', fontsize=13)
plt.xlabel('基础资产价格', fontsize=13)
plt.title('基础资产价格与期权价格的关系', fontsize=13)
plt.legend(fontsize=13)
plt.grid(True);