数据科普:期权价格和相关变量的关系(投资必知必会)

本文探讨了布莱克-斯科尔斯-默顿模型中影响期权价格的五个关键因素:基础资产价格、执行价格、波动率、无风险收益率和期权剩余时间。通过实例分析,展示了这些变量变化对看涨和看跌期权价格的非线性影响,揭示了期权市场的复杂动态。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

通过布莱克-斯科尔斯-默顿模型,不难发现有5个变量会影响期权的价格:一是当前基础资产价格S,二是期权的执行价格K,三是期权期限T,四是基础资产的波动率;五是无风险收益率r。下面主要针对当其中一个变量发生变化并且假定其他变量保持不变时,观察其对于期权价格的影响。

利用刚才工商银行股票期权作为分析对象,通过 Python 演示期权价格与基础资产(股票)价格、期权执行价格、波动率、无风险收益率、期限等变量之间的关系。

1. 期权价格与基础资产价格的关系

假设一个工商银行股票期权信息,对股票价格设定一个取值是在区间[5,7]的等差数列,其他的变量取值保持不变,运用布莱克斯科尔斯默顿模型对期权进行定价,从而模拟期权价格与基础资产价格变动之间的关系。

S_list = np.linspace(5.0, 7.0, 100)    #基础资产价格数组
call_list1 = call_BS(S=S_list, K=6, sigma=0.24, r=0.04, T=0.5)   #计算看涨期权价格数组
put_list1 = put_BS(S=S_list, K=6, sigma=0.24, r=0.04, T=0.5)     #计算看跌期权价格数组

plt.figure(figsize=(8, 6))
plt.plot(S_list, call_list1, 'b-', label='看期权', lw=2.5)
plt.plot(S_list, put_list1, 'r-', label='看跌期权', lw=2.5)
plt.ylabel('期权价格', fontsize=13)
plt.xlabel('基础资产价格', fontsize=13)
plt.title('基础资产价格与期权价格的关系', fontsize=13)
plt.legend(fontsize=13)
plt.grid(True);
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

朱小五是凹凸君呀

感谢支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值