#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
/*
Tarjan算法
对于a和b分别建图,让i与ai连边、i与bi连边
计算图强连通分量的个数cnt_a,cnt_b和各个强连通分量包含点的个数num_a,num_b
如果num_a>=num_b&&num_a%num_b==0 说明值域中num_b个数可以代入num_a个递推式
*/
const int maxn=1e5+5;//点数
const int mod=1e9+7;
struct Edge
{
int to;
int next;
}edge[maxn];
int head[maxn],tot;
//belong 数组的值是1~scc
int low[maxn],dfn[maxn],Stack[maxn],belong[maxn];
int index,top;
int scc;//强连通分量的个数
bool instack[maxn];
int num[maxn];//各个强连通分量包含点的个数,数组编号1~scc
int n,m;
int num_a[maxn];
int num_b[maxn];
int cnt_a,cnt_b;
void addage(int u,int v)
{
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot++;
}
void Tarjan(int u)
{
int v;
low[u]=dfn[u]=++index;
Stack[top++]=u;
instack[u]=true;
for(int i=head[u];i!=-1;i=edge[i].next)
{
v=edge[i].to;
if(!dfn[v])
{
Tarjan(v);
if(low[u]>low[v]) low[u]=low[v];
}
else if(instack[v]&&low[u]>dfn[v])
{
low[u]=dfn[v];
}
}
if(low[u]==dfn[u])
{
scc++;
do
{
v=Stack[--top];
instack[v]=false;
belong[v]=scc;
num[scc]++;
}
while(v!=u);
}
}
void solve(int n)
{
memset(dfn,0,sizeof(dfn));
memset(instack,false,sizeof(instack));
memset(num,0,sizeof(num));
index=scc=top=0;
for(int i=0;i<n;i++)
{
if(!dfn[i])
{
Tarjan(i);
}
}
}
void init()
{
tot=0;
memset(head,-1,sizeof(head));
}
int main()
{
int kase=1;
while(~scanf("%d%d",&n,&m))
{
int x;
init();
for(int i=0;i<n;i++)
{
scanf("%d",&x);
addage(i,x);
}
solve(n);
cnt_a=scc;
for(int i=1;i<=scc;i++)
{
num_a[i-1]=num[i];
}
init();
for(int i=0;i<m;i++)
{
scanf("%d",&x);
addage(i,x);
}
solve(m);
cnt_b=scc;
for(int i=1;i<=scc;i++)
{
num_b[i-1]=num[i];
}
int ans=1;
int tmp=0;
//printf("cnt_a=%d cnt_b=%d\n",cnt_a,cnt_b);
for(int i=0;i<cnt_a;i++)
{
tmp=0;//有cnt_a个递推式时,函数可以有tmp个
for(int j=0;j<cnt_b;j++)
{
//printf("a=%d b=%d\n",num_a[i],num_b[j]);
if(num_a[i]>=num_b[j]&&num_a[i]%num_b[j]==0)
{
tmp+=num_b[j];
//只需需要确定一个递推式,剩下cnt_a-1个的值都可以确定
//因此,函数可有cnt_b个
tmp%=mod;
}
}
//printf("tmp=%d\n",tmp);
ans=(ans*tmp)%mod;
}
printf("Case #%d: %d\n",kase++,ans);
}
return 0;
}
HDU 6038 Function(强连通分量)
最新推荐文章于 2021-08-10 14:50:27 发布