前言
其实主要的目的是可以在文本中输出各种数学符号,便于以后用到的时候有现成的例子拿过来抄~~
常用导数公式
序号 | 公式 |
---|---|
1 | ( C ) ′ = 0 (C)'=0 (C)′=0 |
2 | ( x μ ) ′ = μ ⋅ x μ − 1 (x^μ)'=μ·x^{μ-1} (xμ)′=μ⋅xμ−1 |
3 | ( s i n x ) ′ = c o s x (sinx)'=cosx (sinx)′=cosx |
4 | ( c o s x ) ′ = − s i n x (cosx)'=-sinx (cosx)′=−sinx |
5 | ( t a n x ) ′ = s e c 2 x (tanx)'=sec^2x (tanx)′=sec2x |
6 | ( c o t x ) ′ = − c s c 2 x (cotx)'=-csc^2x (cotx)′=−csc2x |
7 | ( s e c x ) ′ = s e c x ⋅ t a n x (secx)'=secx·tanx (secx)′=secx⋅tanx |
8 | ( c s c x ) ′ = − c s c x ⋅ c o t x (cscx)'=-cscx·cotx (cscx)′=−cscx⋅cotx |
9 | ( a x ) ′ = a x l n a (a^x)'=a^xlna (ax)′=axlna |
10 | ( e x ) ′ = e x (e^x)'=e^x (ex)′=ex |
11 | ( l o g a x ) ′ = 1 x ⋅ l n a (log_ax)'=\frac{1}{x·lna} (logax)′=x⋅lna1 |
12 | ( l n x ) ′ = 1 x (lnx)'=\frac{1}{x} (lnx)′=x1 |
13 | ( a r c s i n x ) ′ = 1 1 − x 2 (arcsinx)'=\frac{1}{\sqrt{1-x^2}} (arcsinx)′=1−x21 |
14 | ( a r c c o s x ) ′ = − 1 1 − x 2 (arccosx)'=-\frac{1}{\sqrt{1-x^2}} (arccosx)′=−1−x21 |
15 | ( a r c t a n x ) ′ = 1 1 + x 2 (arctanx)'=\frac{1}{1+x^2} (arctanx)′=1+x21 |
16 | ( a r c c o t x ) ′ = − 1 1 + x 2 (arccotx)'=-\frac{1}{1+x^2} (arccotx)′=−1+x21 |
导数的四则运算
序号 | 公式 |
---|---|
1 | ( u ± v ) ′ = u ′ ± v ′ (u \pm v)'=u'\pm v' (u±v)′=u′±v′ |
2 | ( u v ) ′ = u ′ v + u v ′ (uv)'=u'v+uv' (uv)′=u′v+uv′ |
3 | ( u v ) ′ = u ′ v − u v ′ v 2 ( v ≠ 0 ) (\frac{u}{v})'= \frac{u'v-uv'}{v^2}(v \neq 0) (vu)′=v2u′v−uv′(v=0) |
4 | ( C u ) ′ = C u ′ (Cu)'=Cu' (Cu)′=Cu′ |
5 | ( C v ) ′ = − C v ′ v 2 (\frac{C}{v})'=-\frac{Cv'}{v^2} (vC)′=−v2Cv′ |
复合函数的求导
如果
u
=
g
(
x
)
u=g(x)
u=g(x)在点
x
x
x 处可导,而
y
=
f
(
u
)
y=f(u)
y=f(u)在点
u
=
g
(
x
)
u=g(x)
u=g(x)处可导,则复合函数
y
=
f
[
g
(
x
)
]
y=f[g(x)]
y=f[g(x)]在点
x
x
x可导,且其导数为
d
y
d
x
=
f
′
(
u
)
⋅
g
′
(
x
)
或
d
y
d
x
=
d
y
d
u
⋅
d
u
d
x
\frac{dy}{dx}=f'(u)·g'(x)或 \frac{dy}{dx}=\frac{dy}{du}·\frac{du}{dx}
dxdy=f′(u)⋅g′(x)或dxdy=dudy⋅dxdu
例子: y = e x 3 y=e^{x^3} y=ex3,求 d y d x \frac{dy}{dx} dxdy
令
u
=
x
3
u=x^3
u=x3,则
y
=
e
u
y=e^u
y=eu,有
d
y
d
x
=
d
y
d
u
⋅
d
u
d
x
=
e
u
⋅
3
x
2
=
3
x
2
e
x
3
\frac{dy}{dx}=\frac{dy}{du}·\frac{du}{dx}=e^u·3x^2=3x^2e^{x^3}
dxdy=dudy⋅dxdu=eu⋅3x2=3x2ex3