大模型与 Spark:技术初印象
在当今数字化浪潮中,大模型和 Spark 无疑是备受瞩目的两大技术。它们各自在人工智能和大数据处理领域大放异彩,而当这两者相遇,又会碰撞出怎样的火花呢?让我们先来分别认识一下大模型和 Spark。
大模型,即大规模机器学习模型,是利用海量数据和强大算力训练出来的 “大参数” 模型。其发展历程可谓是一部科技创新的传奇史。从 20 世纪中叶人工智能概念的提出,到 2006 年深度学习技术崭露头角,为大模型发展奠定基础;2017 年,Google 提出的 Transformer 架构,更是成为大模型预训练算法架构的基石。随后,OpenAI 的 GPT 系列模型不断突破,参数规模从 GPT-1 的 1.17 亿到 GPT-3 的 1750 亿,再到 GPT-4 的进一步进化,展现出大模型在自然语言处理等领域的巨大潜力。
大模型具有参数规模大、训练数据规模大、算力消耗需求大等特点 ,拥有高度的通用性和泛化能力。在自然语言处理领域,它能实现智能聊天、文本生成、机器翻译等任务,像 ChatGPT 与用户自然流畅的对话,帮助人们撰写文章、解答问题;在图像识别领域,可用于图像分类、目标检测,助力安防监控识别可疑目标,医疗影像分析辅助医生诊断疾病;在自动驾驶领域,帮助车辆识别道路、行人、交通标志,实现安全行驶。
Spark 则是专为大规模数据处理而设计的快速通用计算引擎,由美国加州伯克利大学的 AMP 实验室于 2009 年开发,2010 年正式开源,2014 年成为 Apache 基金会顶级项目。历经多年发展,功能不断完善,版本持续迭代,截至 2025 年 1 月已更新至 Spark 3.5.4。
Spark 基于内存计算,数据可驻留在内存中,避免频繁磁盘 I/O 读写,极大提升计算速度。使用有向无环图(DAG)执行引擎,能优化任务执行顺序,减少不必要计算。支持 Scala、Java、Python 和 R 语言编程,方便不同背景开发者使用。拥有独立集群、Hadoop、YARN、Mesos 等多样运行模式,可在不同环境部署,还能访问 HDFS、Cassandra、HBase 等多种数据源。其生态系统丰富,涵盖 Spark SQL 用于结构化数据处理和 SQL 查询,Spark Streaming 处理实时数据流,MLlib 提供机器学习算法和工具,GraphX 用于图数据处理。例如,电商企业用 Spark 对海量交易数据进行实时分析,快速掌握销售趋势、用户购买行为等;社交平台借助 Spark 处理用户关系图数据,挖掘用户潜在社交关系、推荐好友等。
大模型与 Spark 的融合之美
大模型与 Spark 的融合,并非简单的技术叠加,而是一场深度的协同进化,为数据处理和人工智能应用带来了前所未有的变革。
从技术架构层面来看,大模型训练和推理过程涉及海量数据和复杂计算,对算力要求极高。以 GPT-3 训练为例,其使用了包含 5700 亿单