51 nod 1212 无向图最小生成树

 收藏
 关注
N个点M条边的无向连通图,每条边有一个权值,求该图的最小生成树。
Input
第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量。(2 <= N <= 1000, 1 <= M <= 50000)
第2 - M + 1行:每行3个数S E W,分别表示M条边的2个顶点及权值。(1 <= S, E <= N,1 <= W <= 10000)
Output
输出最小生成树的所有边的权值之和。
Input示例
9 14
1 2 4
2 3 8
3 4 7
4 5 9
5 6 10
6 7 2
7 8 1
8 9 7
2 8 11
3 9 2
7 9 6
3 6 4
4 6 14
1 8 8
Output示例
37


<span style="font-size:14px;">#include <stdio.h>
#include <iostream>
using namespace std;
#define N 1005
#define INF 0x0f0f0f0f
#define MAX  10001

int n, m;
int vis[N], tmp[N], cost[N][N];
int Prim(){
	int k, edge, min_tree = 0;
	for(int i = 1; i <= n; ++i){
		tmp[i] = cost[1][i];
		vis[i] = 0;
	}
	vis[1] = 1;
	for(int i = 1; i <= n - 1; i++){
		edge = INF;
		for(int j = 1; k <= n; j++){
			if(vis[j] == 0 && tmp[j] < edge){
				edge = tmp[j];
				k = j;
			}
		}
		if(edge > MAX)
			return -1;
		min_tree += edge;
		for(int j = 1; j <= n; ++j){
			if(vis[j] == 0 && tmp[j] > cost[k][j])
			tmp[j] = cost[k][j];
		}
	}
	return min_tree;
}

int main(){
	int a, b, c;
	scanf("%d%d", &n, &m);
	for(int i = 1; i <= n; ++i){
		for(int j = 1; j <= n; ++j){
			cost[i][j] = INF;
			cost[i][i] = 0;
		}
	}
	for(int i = 1; i <= m; ++i){
		scanf("%d%d%d", &a, &b, &c);
		cost[a][b] = cost[b][a] = c;
	}
	int ans = Prim();
	printf("%d\n", ans);
	return 0;
}</span>






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值