[AHOI2008]紧急集合 / 聚会

传送门

分析

就是求三个点的LCA。
在这里插入图片描述
如上图,三个点的LCA一定会有两个在同一个点,那么这个时候距三个点距离最短的必定是不重合的那个LCA。(让c多走一点比让ab两个点走的距离更少)
距离公式为:dep[a]+dep[b]+dep[c]-dep[x]-dep[y]-dep[z]。(其中x,y,z为他们的LCA)

代码

#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define full(a,b) memset(a,b,sizeof a)
#define N 500000+5
#define E 2*N
int n,m;
int head[N],ecnt,to[E],nxt[E];
int dep[N],f[N][25],vis[N];
void init()
{
	full(head,-1);
}
void add(int u,int v)
{
	to[++ecnt]=v;
	nxt[ecnt]=head[u];
	head[u]=ecnt;
}
void pre(int u,int fa) 
{
	dep[u]=dep[fa]+1;
	vis[u]=1;
	f[u][0]=fa;
	for(int i=0; i<=20; i++)
		f[u][i+1]=f[f[u][i]][i];
	for(int i=head[u]; i!=-1; i=nxt[i])
	{
		int v=to[i];
		if(vis[v]) continue;
		pre(v,u);
	}
}
int LCA(int x,int y)
{
	if(dep[x]<dep[y]) swap(x,y);
	for(int i=20; i>=0; i--)
	{
		if(dep[f[x][i]]>=dep[y]) x=f[x][i];
		if(x==y) return x;
	}
	for(int i=20; i>=0; i--)
		if(f[x][i]!=f[y][i]) x=f[x][i],y=f[y][i];
	return f[x][0];
}
//以上是LCA模板 
int main()
{
//	freopen("2905: 「AHOI2008」紧急集合.in","r",stdin);
//	freopen("2905: 「AHOI2008」紧急集合.out","w",stdout);
	init();
	scanf("%d%d",&n,&m);
	for(int i=1; i<n; i++)
	{
		int a,b;
		scanf("%d%d",&a,&b);
		add(a,b);add(b,a);
	}
	pre(1,1);
	for(int i=1; i<=m; i++)
	{
		int a,b,c;
		scanf("%d%d%d",&a,&b,&c);
		int x=LCA(a,b),y=LCA(a,c),z=LCA(b,c);
		int ans;
		if(x==y) ans=z;
		else if(x==z) ans=y;
		else ans=x;//找不重合的LCA 
		int s=dep[a]+dep[b]+dep[c]-dep[x]-dep[y]-dep[z];//套公式 
		printf("%d %d\n",ans,s);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值