分析
就是求三个点的LCA。
如上图,三个点的LCA一定会有两个在同一个点,那么这个时候距三个点距离最短的必定是不重合的那个LCA。(让c多走一点比让ab两个点走的距离更少)
距离公式为:dep[a]+dep[b]+dep[c]-dep[x]-dep[y]-dep[z]。(其中x,y,z为他们的LCA)
代码
#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define full(a,b) memset(a,b,sizeof a)
#define N 500000+5
#define E 2*N
int n,m;
int head[N],ecnt,to[E],nxt[E];
int dep[N],f[N][25],vis[N];
void init()
{
full(head,-1);
}
void add(int u,int v)
{
to[++ecnt]=v;
nxt[ecnt]=head[u];
head[u]=ecnt;
}
void pre(int u,int fa)
{
dep[u]=dep[fa]+1;
vis[u]=1;
f[u][0]=fa;
for(int i=0; i<=20; i++)
f[u][i+1]=f[f[u][i]][i];
for(int i=head[u]; i!=-1; i=nxt[i])
{
int v=to[i];
if(vis[v]) continue;
pre(v,u);
}
}
int LCA(int x,int y)
{
if(dep[x]<dep[y]) swap(x,y);
for(int i=20; i>=0; i--)
{
if(dep[f[x][i]]>=dep[y]) x=f[x][i];
if(x==y) return x;
}
for(int i=20; i>=0; i--)
if(f[x][i]!=f[y][i]) x=f[x][i],y=f[y][i];
return f[x][0];
}
//以上是LCA模板
int main()
{
// freopen("2905: 「AHOI2008」紧急集合.in","r",stdin);
// freopen("2905: 「AHOI2008」紧急集合.out","w",stdout);
init();
scanf("%d%d",&n,&m);
for(int i=1; i<n; i++)
{
int a,b;
scanf("%d%d",&a,&b);
add(a,b);add(b,a);
}
pre(1,1);
for(int i=1; i<=m; i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
int x=LCA(a,b),y=LCA(a,c),z=LCA(b,c);
int ans;
if(x==y) ans=z;
else if(x==z) ans=y;
else ans=x;//找不重合的LCA
int s=dep[a]+dep[b]+dep[c]-dep[x]-dep[y]-dep[z];//套公式
printf("%d %d\n",ans,s);
}
return 0;
}