numpy.c_和numpy.squeeze的用法

本文介绍了NumPy库中两种常用数组操作方法:使用numpy.c_连接数组和使用numpy.squeeze压缩数组维度。通过实例展示了如何利用这两种方法进行有效的数组操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. numpy.c_ = <numpy.lib.index_tricks.CClass object>

将切片对象沿第二个轴(按列)转换为连接。

例子:

np.c_[np.array([1,2,3]), np.array([4,5,6])]
Out[96]: 
array([[1, 4],
       [2, 5],
       [3, 6]])

np.c_[np.array([[1,2,3]]), 0, 0, np.array([[4,5,6]])]
Out[97]: array([[1, 2, 3, 0, 0, 4, 5, 6]])

2.  numpy. squeeze ( a )

从数组的形状中删除单维条目,即把shape中为1的维度去掉

x = np.array([[[0], [1], [2]]])

x.shape
Out[99]: (1, 3, 1)

np.squeeze(x).shape
Out[100]: (3,)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值