Promentum AMC-7211 数据表

四端口千兆以太网高级夹层卡

概述

随着大多数下一代网络都以 IP 为基础,以太网接口几乎已成为每个网元的必备接口。 IP 移植需要严格的封包和安全性处理,才能实现线速通信的互连。 RadiSys 四端口千兆以太网 AMC 是千兆线卡解决方案的理想组件。 基于 Cavium OCTEON™ Plus 多核处理器,AMC-7211 能够满足 L2-L7   4 Gbps 全线速的线速封包处理要求。

AMC-7211 也可作为 ATCA-7200 系列 RadiSys 集成线卡解决方案的一部分,其中包括 ATCA-1200 AMC 承载卡和最多 4 AMC-7211 单宽中型 AMC,以及数据通路和管理控制软件,以提供完整的线卡解决方案。

 

产品说明

AMC-7211 是单宽中型 AMC,可提供多达 4 个千兆以太网接口,并通过 SFP 连接器支持铜线和光纤接口。 硬件设计采用了领先的 Cavium OCTEON™ Plus 封包处理技术。 OCTEON™ Plus 处理器是带有强大硬件加速引擎的多核处理器,可用于封包和安全性处理。 利用处理器的多核功能以及基于芯片的硬件加速能力,AMC-7211 可以针对各种封包处理功能(包括转发、负载平衡、流量管理和 IP Sec)进行全线速处理。 此通用模块加快了多重网元的开发时间,这些网元包括媒体网关、RNC、安全/网络网关、边缘路由器、会话边界控制器、入侵检测系统、QoS/策略管理服务器和其它组件。

AMC-7211 包括 1 GB 的焊接型 DDR2 内存,并可用于多个使用模型中。 它可以支持前端或后端 I/O 通道连接选项。 它还包括与载板或背板相应的 PCI Express 和千兆以太网连接。 它可用于独立模式,在承载模块中加电后用作准备接收和处理通信量的资源。 或者通过管理处理器加电,作为卸载引擎用于其它处理器集群。 或者,用作 MicroTCA 环境中的线卡或资源模块。 例如,AMC-7211 设计为可插入 MicroTCA 机箱中,在自带 AMC 插槽的 ATCA 服务器刀片(如 ATCA-4300)和 ATCA AMC 载板刀片(如 RadiSys ATCA-1200)上使用。 此模块与自带 MMC 控制器和 AMC 管理支持(如热插拔)完全兼容。

 

 

线卡解决方案

 

AMC-7211 还可以作为 ATCA-7200 系列中全集成线卡解决方案的一个组成部分。 ATCA-72xx 包括 ATCA-1200 AMC 承载卡和多达 4 AMC-7211 单宽中型 AMC,以及数据通路和管理控制软件,可提供完整的线卡解决方案。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
AMC-loss (Adversarial Mutual Contrast) 是一种在深度学习中用于增强模型对对抗样本鲁棒性的损失函数。它结合了对抗训练(adversarial training)和对比学习的思想,通过同时优化模型的正向预测和负向区分能力。在PyTorch中实现AMC-loss,你需要定义一个新的损失函数,并可能在训练循环中使用`nn.Module`或自定义优化器。 以下是一个简单的AMC-loss的PyTorch代码概述: ```python import torch import torch.nn as nn class AMCContrastLoss(nn.Module): def __init__(self, base_loss, device='cuda'): super(AMCContrastLoss, self).__init__() self.base_loss = base_loss self.device = device self.criterion = nn.CrossEntropyLoss() def forward(self, outputs, targets, adversarial_samples): # 假设outputs是模型的预测,targets是真实标签,adversarial_samples是生成的对抗样本 real_pred, adv_pred = outputs[0], outputs # 分离原始输出和对抗输出 # 正向预测 real_loss = self.base_loss(real_pred, targets) # 负向区分(对比学习) contrast_logits = torch.cat((real_pred, adv_pred), dim=0) contrast_labels = torch.cat((torch.zeros_like(targets), torch.ones_like(targets)), dim=0).to(self.device) contrast_loss = self.criterion(contrast_logits, contrast_labels) # 总损失 total_loss = real_loss + contrast_loss return total_loss # 使用示例 model = MyModel().to(device) optimizer = torch.optim.Adam(model.parameters()) amc_loss = AMCContrastLoss(nn.CrossEntropyLoss()) for inputs, targets in train_loader: inputs, targets = inputs.to(device), targets.to(device) adversarial_inputs = generate_adversarial(inputs) # 假设这个函数能生成对抗样本 outputs = model(inputs, adversarial_inputs) loss = amc_loss(outputs, targets, adversarial_inputs) optimizer.zero_grad() loss.backward() optimizer.step() ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值