进制的简介
进制也就是进位计数制,是人为定义的带进位的计数方法(有不带进位的计数方法,比如原始的结绳计数法,唱票时常用的“正”字计数法,以及类似的tally mark计数)。 对于任何一种进制---X进制,就表示每一位置上的数运算时都是逢X进一位。 十进制是逢十进一,十六进制是逢十六进一,二进制就是逢二进一,以此类推,x进制就是逢x进位。
进制的分类
在程序中,常用的进制可以分为以下几种:
二进制: 以数字0-1来表示每一个自然数,逢2进1。
八进制: 以数字0-7来表示每一个自然数,逢8进1。
十进制: 以数字0-9来表示每一个自然数,逢10进1。
十六进制: 以数字0-9,a-f来表示每一个自然数,逢16进1。
二进制: 0, 1, 10, 11, 100, 101, 110, 111, 1000, ...
八进制: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, ...
十进制: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ...
十六进制: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, 10, 11, ...
进制的表示
同一个自然数,用不同的进制表示的话,结果可能是不一样的。例如,数字10,如果是二进制,表示数字2; 如果是八进制,表示数字8;如果是十进制,表示数字10;如果是十六进制,表示数字16。 因此,不同的进制,需要有不同的标识,来区分不同的进制。
二进制: 以 0b
作为开头,表示一个二进制的数字,例如: 0b10、0b1001...
八进制: 以 0o
作为开头,表示一个八进制的数字,例如:0o10、0o27...
十进制: 没有以任何其他的内容作为开头,表示一个十进制的数字,例如: 123、29...
十六进制: 以 0x
作为开头,表示一个十六进制的数字,例如:0x1001、0x8FC3...
进制的转换
十进制转其他进制
辗转相除法: 用数字除进制,再用商除进制,一直到商为零结束,最后将每一步得到的余数倒着连接以来,就是这个数字的指定的进制表示形式。
18 = 0b10010 = 0o22 = 0x12
其他进制转十进制
每一位的数字乘进制的位数-1次方,再将所有的结果累加到一起。
0b10010 = 1 x 24 + 1 x 21 = 16 + 2 = 18
0o22 = 2 x 81 + 2 x 80 = 16 + 2 = 18
0x12 = 1 x 161 + 2 x 160 = 16 + 2 = 18
二进制与八进制,十六进制的相互转换
每一个八进制位可以等价替换成三个二进制位。 注意: 1. 划分从右到左进行,如果二进制数的左边不够三位,直接在高位补零凑齐三位 2. 当八进制数转成二进制数时,将上述过程反转,有一点要记住,每一个八进制的数必须对应三位二进制位,如果八进制数在转化时得到的二进制数不够三位,直接在最左边用零补齐. 每一个十六进制位可以等价替换成四个二进制位。 跟二进制与八进制的转化规则类似
原反补
数据的转换
在计算机中, 所有的数据存储都是以二进制的形式存储的。 文字、图片、视频... , 在计算机中都是二进制。 那么, 在计算机的存储系统中, 每一个文件都有大小。 那么文件的大小是如何计算的?
每一个二进制位称为一个 比特位(bit)
8个比特位称为一个字节(Byte)
因为:位能表示的数太小了,所以习惯上我们将字节作为计算机存储的最小单位
从字节开始, 每1024个单位向上增1。
8bit = 1Byte
1024Byte = 1KB
1024KB = 1MB
1024MB = 1GB
1024GB = 1TB
1024TB = 1PB
1024PB = 1EB
1024EB = 1ZB
...
负数的表示
在使用二进制表示数字的时候,通常会写满1个字节,如果1个字节表示不了,使用2个字节。如果2个字节表示不了,使用4个字节。以此类推,8个字节、16个字节、32个字节...
在使用二进制表示数字的时候,最高位(最左侧的位)不是用来表示数字的大小的,而是用来表示数字的正负的。0代表正数,1代表负数。因此,最高位又被称为符号位。
0b0000 1000 所表示的数字是 8 0b1000 1000 所表示的数字是 -8
补码的引入
符号位参与运算的问题
在数据的运算中, 由于有符号位的存在。 符号位直接参与运算, 会导致计算的结果出问题。
例如, 在计算 8 + (-8) 的时候, 如果直接使用二进制表示形式进行运算的时候:
0000 1000 + 1000 1000 = 1001 0000
得到结果 -16
原因就是因为符号位参与了运算, 导致计算的结果出了问题。
原反补
为了规避在计算过程中, 符号位的参与运算, 导致计算结果出错。 人们引入了补码, 规避了这个问题。 在计算机中, 所有的数据存储和运算, 都是以 补码 的形式进行的。
-
原码: 一个数字的二进制表示形式, 前面的计算二进制表示形式, 得到的就是原码。
-
反码: 正数的反码与原码相同; 负数的反码是原码符号位不变, 其他位按位取反。
-
补码: 正数的补码与原码相同; 负数的补码是反码 + 1 。
8, 因为是正数, 原反补都是 0000 1000
-8[原] = 1000 1000
-8[反] = 1111 0111
-8[补] = 1111 1000
补码运算
在计算机中, 所有的数据存储和运算, 都是以 补码 的形式进行的。 因此, 在进行数据运算的时候, 将数据计算出补码, 再进行运算。
8 + (-8) = 0
0000 1000 + 1111 1000 = 1 0000 0000
在上述的计算结果中, 出现了多出一位的情况, 这种情况, 称为 溢出 。 如果出现了溢出的情况, 溢出位直接舍去不要, 即最后的计算结果是 0000 0000, 结果是 0
8 + (-16) = -8
0000 1000 + 1111 0000 = 1111 1000
注意: 补码与补码的计算结果,还是补码。 所以, 我们需要将这个结果再转成原码。
补码求原码的过程: 再对这个补码求补即可。 得出结果: 1000 1000, 结果是 -8