卡特兰数概况

卡特兰数

经典实例:括号匹配、进出栈、满二叉树的遍历

我们要记住卡特兰数的前几项,方便在做题时瞬间反应

卡特兰数的计算式

原始式: H n H_n Hn = ( 2 n n ) \tbinom{2n}{n} (n2n) - ( 2 n n + 1 ) \tbinom{2n}{n + 1} (n+12n)

由组合数计算: H n H_n Hn = ( 2 n n ) n + 1 \frac{\tbinom{2n}{n}}{n + 1} \quad n+1(n2n)

递推式: H n H_n Hn = H n − 1 ( 4 n − 2 ) n + 1 \frac{H_{n-1}(4n-2)}{n+1} \quad n+1Hn1(4n2)

路径计数问题

参考oi-wiki:
  • 1.从(0,0)到(m,n)的非降路径数等于m个x和n个y的排列数,即 ( n + m m ) \tbinom{n+m}{m} (mn+m)

  • 2.从(0,0)到(n,n)的除端点外不接触直线 y = x的非降路径数:
    先考虑x下方的路径,都是从(0,0)出发,经过(1,0)及(n,n-1)到(n,n),可以看做是(1,0)到(n,n-1)不接触y = x的非降路径数。

    所有的的非降路径有 ( 2 n − 2 n − 1 ) \tbinom{2n - 2}{n - 1} (n12n2)条。对于这里面任意一条接触了y = x的路径,可以把它最后离开这条线的点到(1,0)之间的部分关于y = x对称变换,就得到从(0,1)到(n,n-1)的一条非降路径。反之也成立。从而y = x下方的非降路径数是 ( 2 n − 2 n − 1 ) \tbinom{2n - 2}{n - 1} (n12n2) - ( 2 n − 2 n ) \tbinom{2n - 2}{n} (n2n2)。根据对称性可知所求答案为2 ( 2 n − 2 n − 1 ) \tbinom{2n - 2}{n - 1} (n12n2) - 2 ( 2 n − 2 n ) \tbinom{2n - 2}{n} (n2n2)

  • 3.从(0,0)到(n,n)的除端点外不穿过直线y = x的非降路径数:

    用类似的方法可以得到:2 ( 2 n n ) n + 1 \frac{\tbinom{2n}{n}}{n + 1} \quad n+1(n2n)

例题:洛谷p1044:

题目链接:https://www.luogu.com.cn/problem/P1044
思路分析:
  • 我们对每一个栈的非法序列进行分析,假设进栈为 + 1 {+1} +1,出栈为 − 1 {-1} 1,那么每一个合法序列的前缀和总是大于或者等于 0 {0} 0
  • 而对于每一个非法序列,它的前缀和在某个地方必定小于0,那么我们对这些前缀取反,就得到了一个有 n + 1 {n+1} n+1 1 {1} 1 n − 1 {n-1} n1 − 1 {-1} 1的合法序列(假设一共有 n {n} n个元素)。
  • 对于这有着 n + 1 {n+1} n+1 1 {1} 1 n − 1 {n-1} n1 − 1 {-1} 1的合法序列,我们可以知道它与另外的一个非法序列一一对应,因此我们可以通过拿序列总数减去非法序列数即可得到合法序列数
  • 合法序列数即为 ( 2 n n ) \tbinom{2n}{n} (n2n)
  • 非法序列数即为 ( 2 n n + 1 ) \tbinom{2n}{n+1} (n+12n) = ( 2 n n − 1 ) \tbinom{2n}{n-1} (n12n)
  • 因此我们要得到的答案即为 ( 2 n n ) \tbinom{2n}{n} (n2n) - ( 2 n n − 1 ) \tbinom{2n}{n-1} (n12n) = H n H_n Hn
题目代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
ll f[25];
int main()
{
        f[0] = 1;
        ll n;
        scanf("%lld", &n);
        for (ll i = 1; i <= n; i++)
        {
                f[i] = f[i - 1] * (4 * i - 2) / (i + 1);
        }
        cout << f[n] << endl;
        return 0;
}

例题:洛谷p1641

题目链接:https://www.luogu.com.cn/problem/P1641
思路分析:
  • 和洛谷p1044类似,只是不是每次入栈都有出栈,也就是说入栈总数大于等于出栈总数

  • 我们依旧把 1 {1} 1视为 + 1 {+1} +1 0 {0} 0视为 − 1 {-1} 1,根据题意前缀和大于 0 {0} 0,因此我们就化成了卡特兰数的变式(实际上是一样的)

  • 合法序列数为 ( n + m m ) \tbinom{n+m}{m} (mn+m),非法序列数为 ( n + m m + 1 ) \tbinom{n+m}{m+1} (m+1n+m)

  • 答案即为: ( n + m m ) \tbinom{n+m}{m} (mn+m) - ( n + m m − 1 ) \tbinom{n+m}{m-1} (m1n+m)

  • 我们再把组合数展开进行化简从而简化计算,化简过程如下:
    在这里插入图片描述

  • 于是就有了下面这份代码

#include <bits/stdc++.h>
using namespace std;
#define ll long long
const ll mod = 20100403;
ll qpow(ll a, ll b)
{
        ll res = 1;
        while (b)
        {
                if (b & 1)
                        res = (res % mod * a % mod) % mod;
                a = (a % mod * a % mod) % mod;
                b >>= 1;
        }
        return res % mod;
}
//费马小定理求逆元
int main()
{
        ll ans = 1;
        ll n, m;
        ios::sync_with_stdio(0);
        cin >> n >> m;
        for (ll i = n + m; i >= n + 2; i--)
        {
                ans = ans * i % mod;
        }
        ans = ans * (n - m + 1) % mod;
        for (ll i = m; i >= 1; i--)
        {
                ans = ans * qpow(i, mod - 2) % mod;
        }
        cout << ans << endl;
        return 0;
}
关于卡特兰数我认为解释最令人懂的是知乎上力扣官方的文章

原文链接:https://zhuanlan.zhihu.com/p/97619085

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值