将向量模型构建成可以api调用的服务
一、选择模型,查看加载方式
我们可以去模型网站下载自己需要的模型比如:huggingface
本次我们以m3e-large来演示,来到huggingface主页搜索m3e-large。
找到model card
在下面找到使用方式
二、下载模型文件
点击files and versions选项卡,依次下载文件。
三、创建Python运行环境
使用IDE创建一个Pyhton项目,Python版本为3.10(根据实际情况而定、或者使用conda虚拟环境)
四、安装依赖
创建一个localEmbedding.py文件将以下代码复制到文件中
import os
from typing import List
import numpy as np
import uvicorn
from fastapi import FastAPI, Depends, HTTPException, status
from fastapi.middleware.cors import CORSMiddleware
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from pydantic import BaseModel
from sentence_transformers import SentenceTransformer, models
# 环境变量传入
sk_key = os.environ.get('sk-key', 'sk-aaabbbcccdddeeefffggghhhiiijjjkkk')
# 创建一个FastAPI实例
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins