代码in数学(一):贝塞尔函数 的MATLAB与SciPy对比——上篇

1 数学背景

Bessel方程
贝塞尔方程的形式为:

其中, v v v为参数,y为因变量,z为自变量。Bessel方程的解就是Bessel函数,Bessel函数有两种:

第一类Bessel函数,J = besselj(nu,z,scale)
y = { J ν ( z ) = ( z 2 ) ν ∑ ( k = 0 ) ∞ ( − z 2 4 ) k k ! Γ ( ν + k + 1 ) J − ν ( z ) = ( z 2 ) − ν ∑ ( k = 0 ) ∞ ( − z 2 4 ) k k ! Γ ( − ν + k + 1 ) y=\begin{cases} J_{\nu}(z)=\left(\frac{z}{2}\right)^{\nu} \sum_{(k=0)}^{\infty} \frac{\left(\frac{-z^{2}}{4}\right)^{k}}{k ! \Gamma(\nu+k+1)} \\ J_{-\nu}(z)=\left(\frac{z}{2}\right)^{-\nu} \sum_{(k=0)}^{\infty} \frac{\left(\frac{-z^{2}}{4}\right)^{k}}{k ! \Gamma(-\nu+k+1)} \end{cases} y=Jν(z)=(2z)ν(k=0)k!Γ(ν+k+1)(4z2)kJν(z)=(2z)ν(k=0)k!Γ(ν+k+1)(4z2)k

第一类Bessel修正函数,I = besseli(nu,z,scale)
y = { I ν ( z ) = ( z 2 ) ν ∑ ( k = 0 ) ∞ ( z 2 4 ) k k ! Γ ( ν + k + 1 ) I − ν ( z ) = ( z 2 ) − ν ∑ ( k = 0 ) ∞ ( z 2 4 ) k k ! Γ ( ν + k + 1 ) y=\begin{cases} I_{\nu}(z)=\left(\frac{z}{2}\right)^{\nu} \sum_{(k=0)}^{\infty} \frac{\left(\frac{z^{2}}{4}\right)^{k}}{k ! \Gamma(\nu+k+1)} \\ I_{-\nu}(z)=\left(\frac{z}{2}\right)^{-\nu} \sum_{(k=0)}^{\infty} \frac{\left(\frac{z^{2}}{4}\right)^{k}}{k ! \Gamma(\nu+k+1)} \end{cases} y=Iν(z)=(2z)ν(k=0)k!Γ(ν+k+1)(4z2)k

  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值