肾结石的治疗过程和费用支出

起初以为只是一次普通的肾结石,没想到治疗周期都快两个月了。


半夜睡觉时被左侧腹部的隐隐作痛给弄醒了,然后一直持续到早上,痛感逐渐加强,急忙就去医院挂了急诊。

在医院等号的时间是痛感最强的阶段了,痛的都站不稳了,要扶着墙走路才行,而且还狂吐不止🤮,等拿到检查结果后,确诊就是肾结石了。

经医生介绍和资料查阅后了解到,目前对肾结石的治疗主要有两种,一种是体外超声波碎石,一种是微创手术,做输尿管软镜碎石术。

体外超声波碎石就比较简单了,不需要打麻药,也不需要住院,"噔噔噔噔噔" 打完就可以回家了。但是有可能效果不好,碎石没碎干净还需要再次处理,而且超声波的冲击可能对肾脏也有影响。

输尿管软镜碎石术就比较复杂了,要住院安排手续,需要全麻,把一根软管从输尿管里面送进去,然后用激光把结石打碎。好处是肯定能清理干净,但是手术肯定是有风险的,尽管声称是微创手术。

由于结石太大了,14mm x 6mm ,差不多一颗花生米大小,体外碎石可能弄不干净,而且 CT 显示还有一点肾积水,医生建议是做手术碎石。

在医院痛苦难耐的我,哪有心思考虑要怎么治疗,选择谨遵医嘱,恨不得马上就手术把这个石头取出来呢。

奈何当天是周五,已经安排不了手术,只能等到下周一手术,周日来住院,打了止痛针就回家了。

本以为做了碎石手术,然后歇息几天就能好了,没想到这才是万里长征第一步呀...

总共了做了两次微创手术,第一次手术没有碎石成功,因为输尿管太窄了,软镜进不去,医生说用儿童版本的软镜都进不去,所以只安装了一个双 J 管支架,用来扩张输尿管,扩张过一段时间后再来做手术。

这挺意外的,没想到输尿管还能太窄了,难道真是平时喝水太少了吗???

隔了两周后,又来第二次做手术,这次倒是成功了,可输尿管还是有点窄,不能直接把石头取出来,就用激光把石头打成粉末了。

但手术后也还需要在输尿管放一个双 J 管支架,一个月后才能取出来,这个双 J 管支架在这段时间是最痛苦难熬了。放了支架肯定不能剧烈运动,但还是会有一些摩擦,导致这一个半月经常尿频、尿急、尿血~~~

过了一个月终于可以拔管了,倒不用全麻手术,局部麻醉就能取出了,至此肾结石的治疗过程终于结束了。

这倒是第一次做全麻手术,躺在手术台上还是有点紧张的,呼吸面罩一戴,不知怎么就没意识了,等苏醒来时已经在另外房间,有种恍如隔世的感觉,鼻子在吸氧,手上插着针管,下面还绑着尿袋,而且喉咙里面还有很强的异物感,无法呼吸,感觉像是进了 ICU 一样,特别虚弱无力,真是再也不想体验这种感觉了。

想起了生化危机里面的片段,女主角爱丽丝在实验室里面醒来,直接就和丧尸开始战斗,还有金刚狼的罗根把手上插的针管直接拔掉,开始战斗,果然电影都是骗人了,正常人从病床醒来都虚的很...

三次手术,其中两次微创,一次拔管,整体花费开销 10101.46 + 17511.45 + 2493.19 = 30106.1 。

没想到这么个肾结石治疗就要 3w 了,好在是有医保统筹基金可以报销百分之七八十,然后还有公司购买的医疗保险报销,个人基本没花什么钱,就是太遭罪了。

经此一役,也算是给自己敲响警钟,身体是革命的本钱,以后一定要多喝水、多喝水、多喝水 。

各位同行们、朋友们,切记多喝水,工作再忙也别忘了多喝水,身体是自己的,健康才是一切的基础,别等到生病了才后悔。

汽车与停车位关键点检测数据集 一、基础信息 • 数据集名称:汽车与停车位关键点检测数据集 • 图片数量: 训练集:308张图片 验证集:47张图片 测试集:22张图片 总计:377张实际场景图片 • 训练集:308张图片 • 验证集:47张图片 • 测试集:22张图片 • 总计:377张实际场景图片 • 分类类别: car(汽车):常见交通工具,用于检测车辆位置形状。 parking-space(停车位):标识可用或占用停车区域,支持空间定位。 • car(汽车):常见交通工具,用于检测车辆位置形状。 • parking-space(停车位):标识可用或占用停车区域,支持空间定位。 • 标注格式:YOLO格式,包含关键点坐标标签,适用于关键点检测任务。 • 数据格式:图片文件来源于真实环境,覆盖多种停车场景。 二、适用场景 • 智能停车管理系统开发:用于自动检测停车位占用状态汽车位置,提升停车场管理效率。 • 自动驾驶与辅助驾驶系统:帮助车辆识别可用停车位并精准定位,支持自动泊车功能。 • 城市交通监控与规划:分析停车位使用模式汽车分布,优化城市交通资源分配。 • 计算机视觉研究:支持关键点检测、目标定位等任务,推动自动驾驶智能交通算法创新。 三、数据集优势 • 关键点标注精准:每个标注包含多个关键点坐标,精确描述汽车停车位的形状与位置,确保模型学习细粒度特征。 • 场景多样性:数据涵盖不同环境角度,增强模型在复杂场景下的泛化能力鲁棒性。 • 格式兼容性强:YOLO标注格式易于集成到主流深度学习框架,方便快速部署实验。 • 实用价值突出:直接应用于智能交通自动驾驶领域,为停车管理车辆导航提供可靠数据支撑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

音视频开发进阶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值