背包问题
时间限制:
3000 ms | 内存限制:
65535 KB
难度:
3
-
描述
-
现在有很多物品(它们是可以分割的),我们知道它们每个物品的单位重量的价值v和重量w(1<=v,w<=10);如果给你一个背包它能容纳的重量为m(10<=m<=20),你所要做的就是把物品装到背包里,使背包里的物品的价值总和最大。
-
输入
-
第一行输入一个正整数n(1<=n<=5),表示有n组测试数据;
随后有n测试数据,每组测试数据的第一行有两个正整数s,m(1<=s<=10);s表示有s个物品。接下来的s行每行有两个正整数v,w。
输出
- 输出每组测试数据中背包内的物品的价值和,每次输出占一行。 样例输入
-
1 3 15 5 10 2 8 3 9
样例输出
-
65
-
-
思路:因为该背包装的物品可以分割,所以试探新问题,只需按价值排序一下,最后当包不能装下时,只需将物品分割。
-
代码:
-
#include<stdio.h> #include<algorithm> using namespace std; struct bag { int v; int w; }; int cmp(bag x,bag y) { return x.v>y.v; } int main() { int t; scanf("%d",&t); while(t--) { int s,m,i,sum=0,max; scanf("%d%d",&s,&m); bag a[105]; for(i=0;i<s;i++) { scanf("%d%d",&a[i].v,&a[i].w); } sort(a,a+s,cmp); max=m; for(i=0;i<s;i++) { if(a[i].w<max) { sum+=a[i].v*a[i].w; max=max-a[i].w; } else { sum+=a[i].v*max; break; } } printf("%d\n",sum); } return 0; }
-
第一行输入一个正整数n(1<=n<=5),表示有n组测试数据;