电子书:《Machine Learning Master》


简介

目录

  • Chapter 1: 机器学习导论
  • Machine Learning(一):基于 TensorFlow 实现宠物血统智能识
  • Machine Learning(二):宠物智能识别之 Using OpenCV with Node.js
  • 机器学习算法 Top 10
  • 机器学习项目 Top 30
  • Chapter N: 媒体报道集
  • 经济学人:计算机如何学习人类语言?
  • 经济学人:译者为何忧虑?

下载

https://www.gitbook.com/book/riboseyim/machine-learning

国内用户访问GitBook不太稳定,提供百度云快捷下载,同时提供了pdf、mobi、ePub三种格式。

历史版本

基本原则:持续发布,争取做到每四个月发布一个新版本

Edition 0.1

更多精彩内容扫码关注公众号,RiboseYim's Blog:https://riboseyim.github.io 

属于网络下载资源,感谢原作者的贡献。 ##目录介绍 - **DeepLearning Tutorials** 这个文件夹下包含一些深度学习算法的实现代码,以及具体的应用实例,包含: Keras使用进阶。介绍了怎么保存训练好的CNN模型,怎么将CNN用作特征提取,怎么可视化卷积图。 [keras_usage]介绍了一个简单易用的深度学习框架keras,用经典的Mnist分类问题对该框架的使用进行说明,训练一个CNN,总共不超过30行代码。 将卷积神经网络CNN应用于人脸识别的一个demo,人脸数据库采用olivettifaces,CNN模型参考LeNet5,基于python+theano+numpy+PIL实现。 CNN卷积神经网络算法的实现,模型为简化版的LeNet,应用于MNIST数据集(手写数字),来自于DeepLearning.net上的一个教程,基于python+theano 多层感知机算法的实现,代码实现了最简单的三层感知机,并应用于MNIST数据集。 [Softmax_sgd(or logistic_sgd)]Softmax回归算法的实现,应用于MNIST数据集,基于Python+theano。 - **PCA** 基于python+numpy实现了主成份分析PCA算法 - **kNN** 基于python+numpy实现了K近邻算法,并将其应用在MNIST数据集上, - **logistic regression** - 基于C++以及线性代数库Eigen实现的logistic回归,[代码] - 基于python+numpy实现了logistic回归(二类别) - **ManifoldLearning** 运用多种流形学习方法将高维数据降维,并用matplotlib将数据可视化(2维和3维) - **SVM** - **GMM** GMM和k-means作为EM算法的应用,在某种程度有些相似之处,不过GMM明显学习出一些概率密度函数来,结合相关理解写成python版本 - **DecisionTree** Python、Numpy、Matplotlib实现的ID3、C4.5,其中C4.5有待完善,后续加入CART。 - **KMeans** 介绍了聚类分析中最常用的KMeans算法(及二分KMeans算法),基于NumPy的算法实现,以及基于Matplotlib的聚类过程可视化。 朴素贝叶斯算法的理论推导,以及三种常见模型(多项式模型,高斯模型,伯努利模型)的介绍与编程实现(基于Python,Numpy)
Explore and master the most important algorithms for solving complex machine learning problems. Key Features Discover high-performing machine learning algorithms and understand how they work in depth. One-stop solution to mastering supervised, unsupervised, and semi-supervised machine learning algorithms and their implementation. Master concepts related to algorithm tuning, parameter optimization, and more Book Description Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn. You will also learn how to use Keras and TensorFlow to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need. What you will learn Explore how a ML model can be trained, optimized, and evaluated Understand how to create and learn static and dynamic probabilistic models Successfully cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work and how to train, optimize, and validate them Work with Autoencoders and Generative Adversarial Networks Apply label spreading and propagation to large datasets Explore the most important Reinforcement Learning techniques Who This Book Is For This book is an ideal and relevant source of content for data science professionals who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. A basic knowledge of machine learning is preferred to get the best out of this guide. Table of Contents Machine Learning Model Fundamentals Introduction to Semi-Supervised Learning Graph-based Semi-Supervised Learning Bayesian Networks and Hidden Markov Models EM algorithm and applications Hebbian Learning Advanced Clustering and Feature Extraction Ensemble Learning Neural Networks for Machine Learning Advanced Neural Models Auto-Encoders Generative Adversarial Networks Deep Belief Networks Introduction to Reinforcement Learning Policy estimation algorithms
Preface Machine learning algorithms dominate applied machine learning. Because algorithms are such a big part of machine learning you must spend time to get familiar with them and really understand how they work. I wrote this book to help you start this journey. You can describe machine learning algorithms using statistics, probability and linear algebra. The mathematical descriptions are very precise and often unambiguous. But this is not the only way to describe machine learning algorithms. Writing this book, I set out to describe machine learning algorithms for developers (like myself). As developers, we think in repeatable procedures. The best way to describe a machine learning algorithm for us is: 1. In terms of the representation used by the algorithm (the actual numbers stored in a file). 2. In terms of the abstract repeatable procedures used by the algorithm to learn a model from data and later to make predictions with the model. 3. With clear worked examples showing exactly how real numbers plug into the equations and what numbers to expect as output. This book cuts through the mathematical talk around machine learning algorithms and shows you exactly how they work so that you can implement them yourself in a spreadsheet, in code with your favorite programming language or however you like. Once you possess this intimate knowledge, it will always be with you. You can implement the algorithms again and again. More importantly, you can translate the behavior of an algorithm back to the underlying procedure and really know what is going on and how to get the most from it. This book is your tour of machine learning algorithms and I’m excited and honored to be your tour guide. Let’s dive in.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值