Signal Processing
旧人赋荒年
Challenge, Passion, Flexibility
展开
-
群延迟解释(FIR线性相位的解释)
线性相位:线性相位指的是相频响应φ(ω)为频率ω的线性函数,数学表示:φ(ω) = a*ω + b通俗解释是:信号经过滤波器后,各个频率分量的延时时间都是一样的。(此处如果理解着感觉矛盾,看下面群延时的解释)群延迟:群延迟= -dφ(ω) / d(ω) = -a“群延迟”(dφ(ω)/dω)就是相位对频率的微分(导数)。若其是非常数,则波的各频率分量随着时间推移将各转载 2014-12-06 19:49:32 · 8274 阅读 · 0 评论 -
各种模拟滤波器的特性比较
什么是滤波器?是用来消除干扰杂讯的器件,将输入或输出经过过滤而得到纯净的交流电。 1.滤波器的功能滤波器的主要功能是让部分频率的信号顺利的通过,而另外一部分频率的信号则受到抑制,它是一个选频电路。滤波器中,把信号能够通过的频率范围,称为通频带或通带;反之,信号受到很大衰减或完全被抑制的频率范围称为阻带;通带和阻带之间的分界频率称为截止频率;理想滤波器在通带内的电压增益为常数,在阻带转载 2014-12-08 19:20:42 · 10818 阅读 · 0 评论 -
补零与离散傅里叶变换的分辨率
离散傅里叶变换(DFT)的输入是一组离散的值,输出同样是一组离散的值。在输入信号而言,相邻两个采样点的间隔为采样时间Ts。在输出信号而言,相邻两个采样点的间隔为频率分辨率fs/N,其中fs为采样频率,其大小等于1/Ts,N为输入信号的采样点数。这也就是说,DFT的频域分辨率不仅与采样频率有关,也与信号的采样点数有关。那么,如果保持输入信号长度不变,但却对输入信号进行补零,增加DFT的点数,此时的分转载 2015-02-01 16:45:35 · 1205 阅读 · 0 评论 -
滤波电容、去耦电容、旁路电容的作用
滤波电容用在电源整流电路中,用来滤除交流成分。使输出的直流更平滑。去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。 一、关于去耦电容蓄能作用的理解 1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。 而实际上,芯片附近的电容还有蓄能的作用,这是第转载 2016-03-10 08:59:03 · 712 阅读 · 0 评论 -
理解卷积
1. 卷积的物理意义-加权叠加卷积的重要的物理意义是:一个函数(如:单位响应)在另一个函数(如:输入信号)上的加权叠加。 举例: 已知 x[0] = a, x[1] = b, x[2]=c 已知y[0] = i, y[1] = j, y[2]=k 下面通过演示求x[n] * y[n]的过程,揭示卷积的物理意义。 第一步,x[n]乘以y[0]并平移到位置0: 第二步,x[n]乘原创 2016-09-28 21:48:50 · 1707 阅读 · 0 评论 -
信号白化处理的意义
白化指的是将随机变量A分解为KB,A向量组可以由线性无关的向量组B线性表出,使得向量组B的各个向量之间无耦合,便于分析。PCA是一种常用的算法原创 2016-10-06 10:30:20 · 9413 阅读 · 0 评论 -
卡尔曼滤波 -- 从推导到应用
前言 卡尔曼滤波器是在估计线性系统状态的过程中,以最小均方差为目的而推导出的几个递推数学等式,也可以从贝叶斯推断的角度来推导。 本文将分为两部分:第一部分,结合例子,从最小均方差的角度,直观地介绍卡尔曼滤波的原理,并给出较为详细的数学推导。第二部分,通过两个例子给出卡尔曼滤波的实际应用。其中将详细介绍一个匀加速模型,并直观转载 2017-05-16 18:15:19 · 1204 阅读 · 0 评论