第一类斯特林数
很巧妙,注意到一个性质:n的数的环排列的个数与n-1个数的排列的个数相等。
http://blog.csdn.net/hyogahyoga/article/details/7878871
#include<cstdio>
#define MOD 1000000007
#define N 2005
using namespace std;
long long s[N][N], c[N][N];
void init()
{
c[1][1]=c[1][0]=1;
s[1][1]=1;
for(int i = 2; i < N; i++)
{
c[i][0]=1;
for(int j = 1; j <= i; j++)
{
c[i][j]=(c[i-1][j]+c[i-1][j-1])%MOD;
s[i][j]=(s[i-1][j-1]+s[i-1][j]*(i-1))%MOD;
}
}
}
int main()
{
init();
int T;
scanf("%d",&T);
while(T--)
{
int n, x, y;
scanf("%d%d%d",&n,&x,&y);
if(x+y<2)
{
if(x+y==0)printf("0\n");
else if(n==1)printf("1\n");
else printf("0\n");
}
else if(x+y-1>n)printf("0\n");
else printf("%lld\n",s[n-1][x+y-2]*c[x+y-2][x-1]%MOD);
}
}