BZOJ 2657 [Zjoi2012]旅游(journey)

DP最长链

不会证明的玄学题。

我们令每个三角形变成一个点,相邻三角形连边,一定是构成一棵树(如果有环,那么中间就会有端点,显然不行)

然后就跑最长链了(不会证明)

#include<cstdio>
#include<algorithm>
#include<map>
#define N 200005
using namespace std;
map<pair<int,int>,int> mapp;
struct edge{int next,to;}e[N<<1];
int ecnt=1, mcnt=0, f[N][3], last[N], side[N<<1][3], mx1[N], mx2[N], ans=0;
void addedge(int a, int b)
{
    e[++ecnt]=(edge){last[a],b};
    last[a]=ecnt;
}
void dfs(int x, int fa)
{
    for(int i = last[x]; i; i=e[i].next)
    {
        int y = e[i].to;
        if(y==fa)continue;
        dfs(y,x);
        int tmp = mx1[y]+1;

        if(tmp > mx1[x])mx2[x]=mx1[x],mx1[x]=tmp;
        else if(tmp > mx2[x])mx2[x]=tmp;
    }
    if(ans < mx1[x]+mx2[x]+1)ans = mx1[x]+mx2[x]+1;
}
int main()
{
    int n;
    scanf("%d",&n);
    for(int i = 1; i <= n; i++)
    {
        scanf("%d%d%d",&f[i][0],&f[i][1],&f[i][2]);
        for(int j = 0; j <= 2; j++)
            for(int k = 0; k <= 2; k++)
                if(f[i][j] < f[i][k])
                {
                    int pos;
                    if(!mapp[make_pair(f[i][j], f[i][k])])pos = mapp[make_pair(f[i][j], f[i][k])] = ++mcnt;
                    else pos = mapp[make_pair(f[i][j],f[i][k])];
                    side[pos][++side[pos][0]] = i;
                }
    }
    for(int i = 1; i <= mcnt; i++)
        if(side[i][0] == 2)
        {
            addedge(side[i][1],side[i][2]);
            addedge(side[i][2],side[i][1]);
        }
    dfs(1,0);
    printf("%d\n",ans);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值