CSP-M4 C - 宇宙狗的危机 Gym - 270737I

题目描述

在瑞神大战宇宙射线中我们了解到了宇宙狗的厉害之处,虽然宇宙狗凶神恶煞,但是宇宙狗有一个很可爱的女朋友。

最近,他的女朋友得到了一些数,同时,她还很喜欢树,所以她打算把得到的数拼成一颗树。

这一天,她快拼完了,同时她和好友相约假期出去玩。贪吃的宇宙狗不小心把树的树枝都吃掉了。所以恐惧包围了宇宙狗,他现在要恢复整棵树,但是它只知道这棵树是一颗二叉搜索树,同时任意树边相连的两个节点的 gcd(greatest common divisor) 都超过1。

但是宇宙狗只会发射宇宙射线,他来请求你的帮助,问你能否帮他解决这个问题。

补充知识:

GCD:最大公约数,两个或多个整数共有约数中最大的一个 ,例如8和6的最大公约数是2。

一个简短的用辗转相除法求gcd的例子:

int gcd(int a,int b){return b == 0 ? a : gcd(b,a%b);}

输入描述

输入第一行一个t,表示数据组数。

对于每组数据,第一行输入一个n,表示数的个数

接下来一行有n个数​,输入保证是升序的。

输出描述

每组数据输出一行,如果能够造出来满足题目描述的树,输出Yes,否则输出No。

无行末空格。

输入样例 1
1
6
3 6 9 18 36 108
输出样例 1
Yes
输入样例 2
2
2
7 17
9
4 8 10 12 15 18 33 44 81
输出样例 2
No
Yes

样例解释
样例1可构造如下图
在这里插入图片描述
数据组成
给出的数为上限。

数据点数tn a i a_i ai
1,2,3515 1 0 9 10^9 109
4,5535 1 0 9 10^9 109
7,8,9,105700 1 0 9 10^9 109
解题思路

这道题可以用动态规划来求解。根据二叉搜索树的定义,对于某个二叉搜索树的结点,其左子树所有点的大小都要小于当前点,其右子树的所有点都要大于当前点。

题目还有个要求,就是两个结点之间的最大公约数大于1,这两个点之间才能有边。这个限制条件我们可以用二维数组来表示,在执行动态规划算法前先计算完成,存储到 line 数组中。line[i][j]为真,表示 i j 两点间可以连线。

因此,我们可以尝试把符合条件的子树合并成一个大数,用L[i][j]表示[i,j]这个区间能构成左子树,用R[i][j]表示[i,j]这个区间能构成右子树。而区间合并的条件是L[i][k]和L[k][j]是符合条件的,那么L[i][j]也是符合条件的。

程序原码
#include<iostream>
using namespace std;
const int N = 705;

int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); }


int main() {
	int t;
	cin >> t;
	while (t--) {
		int n; //初始化
		int a[N] = { 0 };
		bool L[N][N] = { 0 }, R[N][N] = { 0 }; //左树 右树
		bool tree[N][N] = { 0 }, line[N][N] = { 0 }; //构成二叉树 符合公因数约束
		cin >> n;
		for (int i = 1; i <= n; i++) { //获取输入
			cin >> a[i];
			L[i][i] = 1; 
			R[i][i] = 1;
		}
		for (int i = 1; i <= n; i++) { //计算是否满足最大公约数的约束
			for (int j = 1; j <= n; j++) {
				if (i != j && gcd(a[i], a[j]) > 1) {
					line[i][j] = 1;
				}
			}
		}
		for (int i = 0; i < n; i++) { //判断转移条件
			for (int j = 1; i + j <= n; j++) {
				for (int k = j; k <= i + j; k++) {
					if (L[j][k] && R[k][i + j]) { //可以合并成一个大数
						tree[j][i + j] = 1;
						if (line[j - 1][k]) { //右子树满足条件
							R[j - 1][i + j] = 1;
						}
						if (line[k][i + j + 1]) { //左子树满足条件
							L[j][i + j + 1] = 1;
						}
					}
				}
			}
		}
		if (tree[1][n]) { //从1到n是否能构成二叉搜索树
			cout << "Yes\n";
		}
		else {
			cout << "No\n";
		}
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值