题目描述
在瑞神大战宇宙射线中我们了解到了宇宙狗的厉害之处,虽然宇宙狗凶神恶煞,但是宇宙狗有一个很可爱的女朋友。
最近,他的女朋友得到了一些数,同时,她还很喜欢树,所以她打算把得到的数拼成一颗树。
这一天,她快拼完了,同时她和好友相约假期出去玩。贪吃的宇宙狗不小心把树的树枝都吃掉了。所以恐惧包围了宇宙狗,他现在要恢复整棵树,但是它只知道这棵树是一颗二叉搜索树,同时任意树边相连的两个节点的 gcd(greatest common divisor) 都超过1。
但是宇宙狗只会发射宇宙射线,他来请求你的帮助,问你能否帮他解决这个问题。
补充知识:
GCD:最大公约数,两个或多个整数共有约数中最大的一个 ,例如8和6的最大公约数是2。
一个简短的用辗转相除法求gcd的例子:
int gcd(int a,int b){return b == 0 ? a : gcd(b,a%b);}
输入描述
输入第一行一个t,表示数据组数。
对于每组数据,第一行输入一个n,表示数的个数
接下来一行有n个数,输入保证是升序的。
输出描述
每组数据输出一行,如果能够造出来满足题目描述的树,输出Yes,否则输出No。
无行末空格。
输入样例 1
1
6
3 6 9 18 36 108
输出样例 1
Yes
输入样例 2
2
2
7 17
9
4 8 10 12 15 18 33 44 81
输出样例 2
No
Yes
样例解释
样例1可构造如下图
数据组成
给出的数为上限。
数据点数 | t | n | a i a_i ai |
---|---|---|---|
1,2,3 | 5 | 15 | 1 0 9 10^9 109 |
4,5 | 5 | 35 | 1 0 9 10^9 109 |
7,8,9,10 | 5 | 700 | 1 0 9 10^9 109 |
解题思路
这道题可以用动态规划来求解。根据二叉搜索树的定义,对于某个二叉搜索树的结点,其左子树所有点的大小都要小于当前点,其右子树的所有点都要大于当前点。
题目还有个要求,就是两个结点之间的最大公约数大于1,这两个点之间才能有边。这个限制条件我们可以用二维数组来表示,在执行动态规划算法前先计算完成,存储到 line 数组中。line[i][j]为真,表示 i j 两点间可以连线。
因此,我们可以尝试把符合条件的子树合并成一个大数,用L[i][j]表示[i,j]这个区间能构成左子树,用R[i][j]表示[i,j]这个区间能构成右子树。而区间合并的条件是L[i][k]和L[k][j]是符合条件的,那么L[i][j]也是符合条件的。
程序原码
#include<iostream>
using namespace std;
const int N = 705;
int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); }
int main() {
int t;
cin >> t;
while (t--) {
int n; //初始化
int a[N] = { 0 };
bool L[N][N] = { 0 }, R[N][N] = { 0 }; //左树 右树
bool tree[N][N] = { 0 }, line[N][N] = { 0 }; //构成二叉树 符合公因数约束
cin >> n;
for (int i = 1; i <= n; i++) { //获取输入
cin >> a[i];
L[i][i] = 1;
R[i][i] = 1;
}
for (int i = 1; i <= n; i++) { //计算是否满足最大公约数的约束
for (int j = 1; j <= n; j++) {
if (i != j && gcd(a[i], a[j]) > 1) {
line[i][j] = 1;
}
}
}
for (int i = 0; i < n; i++) { //判断转移条件
for (int j = 1; i + j <= n; j++) {
for (int k = j; k <= i + j; k++) {
if (L[j][k] && R[k][i + j]) { //可以合并成一个大数
tree[j][i + j] = 1;
if (line[j - 1][k]) { //右子树满足条件
R[j - 1][i + j] = 1;
}
if (line[k][i + j + 1]) { //左子树满足条件
L[j][i + j + 1] = 1;
}
}
}
}
}
if (tree[1][n]) { //从1到n是否能构成二叉搜索树
cout << "Yes\n";
}
else {
cout << "No\n";
}
}
return 0;
}