-
输入
-
第一行输入一个正整数N表示共有n次测试数据。
每一组测试数据的第一行有三个整数n,w,h,n表示共有n个喷水装置,w表示草坪的横向长度,h表示草坪的纵向长度。
随后的n行,都有两个整数xi和ri,xi表示第i个喷水装置的的横坐标(最左边为0),ri表示该喷水装置能覆盖的圆的半径。
输出
-
每组测试数据输出一个正整数,表示共需要多少个喷水装置,每个输出单独占一行。
如果不存在一种能够把整个草坪湿润的方案,请输出0。
样例输入
-
2 2 8 6 1 1 4 5 2 10 6 4 5 6 5
样例输出
-
1 2
这个题我做了两三天一直是wa,基本思路很简单,贪心。用勾股定理求出能覆盖的左右范围,然后从小到大给左端点排序。
一不小心,但总是出现各种各样的错误,被坑死了。
代码如下。
#include<stdio.h>
#include<algorithm>
using namespace std;
#include<math.h>
#include<string.h>
struct note
{
double xi,ri;
} q[10050];
struct doll
{
double star,end;
} r[10050];
int fun(doll a,doll b)
{
return a.star<b.star;
}
int main()
{
int m;
scanf("%d",&m);
while(m--)
{
double w,h,t;
int n,i,j,f=1,sum=0;
scanf("%d%lf%lf",&n,&w,&h);
j=0;
for(i=0; i<n; i++)
{
scanf("%lf%lf",&q[i].xi,&q[i].ri);
if(q[i].ri>=(h/2))
{
t=sqrt(q[i].ri*q[i].ri-(h/2)*(h/2));
r[j].star=q[i].xi-t;
r[j++].end=q[i].xi+t;
}
}
sort(r,r+j,fun);
double l=0,max;
while(l<w)
{
max=0;
for(i=0; i<n&&r[i].star<=l; i++)
{
if((r[i].end-l)>max) //每次循环均找出最大的覆盖范围。
{
max=r[i].end-l;
}
}
if(max==0)
{
f=0;
break;
}
else
{
l=max+l;
sum++;
}
}
if(f==1)
{
printf("%d\n",sum);
}
else
{
printf("0\n");
}
}
return 0;
}