《吴恩达机器学习》笔记——8 正则化

《吴恩达机器学习》笔记——8 正则化

1 过拟合问题

解决过拟合问题具体
减少选取变量的数量人为选择保留的特征
模型选择算法
正则化保留所有特征,但减小 θ j \theta_j θj的数量级或值

2 代价函数

正则化代价函数 J ( θ ) = 1 2 m [ ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 + λ ∑ j = 1 n θ j 2 ] J(\theta)=\frac{1}{2m}\left[\sum\limits^m_{i=1}(h_\theta(x^{(i)})-y^{(i)})^2+\lambda\sum\limits^n_{j=1}\theta^2_j\right] J(θ)=2m1[i=1m(hθ(x(i))y(i))2+λj=1nθj2]
正则化参数 λ { 过 大 → 欠 拟 合 过 小 → 过 拟 合 \lambda\left\{\begin{matrix}过大\rightarrow欠拟合\\过小\rightarrow过拟合\end{matrix}\right. λ{

3 线性回归的正则化

-梯度下降
J ( θ ) J(\theta) J(θ) 1 2 m [ ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 + λ ∑ j = 1 n θ j 2 ] \frac{1}{2m}\left[\sum\limits^m_{i=1}(h_\theta(x^{(i)})-y^{(i)})^2+\lambda\sum\limits^n_{j=1}\theta^2_j\right] 2m1[i=1m(hθ(x(i))y(i))2+λj=1nθj2]
min ⁡ θ J ( θ ) \min\limits_\theta J(\theta) θminJ(θ) 重 复 { θ 0 : = θ 0 − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x 0 ( i ) θ j : = θ j − α 1 m [ ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) + λ θ j ] } ( j = 1 , … , n ) 重复\{\\\theta_0:=\theta_0-\alpha \frac{1}{m}\sum\limits^m_{i=1}(h_\theta(x^{(i)})-y^{(i)})x^{(i)}_0\\\theta_j:=\theta_j-\alpha\frac{1}{m}\left[\sum\limits^m_{i=1}(h_\theta(x^{(i)})-y^{(i)})x^{(i)}_j+\lambda\theta_j\right]\\\}\qquad (j=1,\dots,n) {θ0:=θ0αm1i=1m(hθ(x(i))y(i))x0(i)θj:=θjαm1[i=1m(hθ(x(i))y(i))xj(i)+λθj]}(j=1,,n)
θ j \theta_j θj θ j : = θ j ( 1 − α λ m ) − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) \theta_j:=\theta_j(1-\alpha\frac{\lambda}{m})-\alpha\frac{1}{m}\sum\limits^m_{i=1}(h_\theta(x^{(i)})-y^{(i)})x^{(i)}_j θj:=θj(1αmλ)αm1i=1m(hθ(x(i))y(i))xj(i)
-正规方程
X X X [ ( x ( 1 ) ) T ⋮ ( x ( m ) ) T ] m × ( n + 1 ) \left[\begin{matrix}(x^{(1)})^\mathrm{T}\\\vdots\\(x^{(m)})^\mathrm{T}\end{matrix}\right]_{m\times(n+1)} (x(1))T(x(m))Tm×(n+1)
y y y [ y ( 1 ) ⋮ y ( m ) ] ∈ R m \left[\begin{matrix}y^{(1)}\\\vdots\\y^{(m)}\end{matrix}\right]\in\mathbb{R}^m y(1)y(m)Rm
θ \theta θ ( X T X + λ [ 0 1 1 ⋱ 1 ] ( n + 1 ) × ( n + 1 ) ) − 1 X T y \left(X^\mathrm{T}X+\lambda\left[\begin{matrix}0&&&&\\&1&&&\\&&1&&\\&&&\ddots&\\&&&&1\end{matrix}\right]_{(n+1)\times(n+1)}\right)^{-1}X^\mathrm{T}y XTX+λ0111(n+1)×(n+1)1XTy

4 Logistic回归的正则化

J ( θ ) J(\theta) J(θ) − [ 1 m ∑ i = 1 m y ( i ) log ⁡ h θ ( x ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] + λ 2 m ∑ j = 1 n θ j 2 -\left[\frac{1}{m}\sum\limits^m_{i=1}y^{(i)}\log h_\theta(x^{(i)})+(1-y^{(i)})\log(1-h_\theta(x^{(i)}))\right]+\frac{\lambda}{2m}\sum\limits^n_{j=1}\theta_j^2 [m1i=1my(i)loghθ(x(i))+(1y(i))log(1hθ(x(i)))]+2mλj=1nθj2
min ⁡ θ J ( θ ) \min\limits_\theta J(\theta) θminJ(θ) 重 复 { θ 0 : = θ 0 − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x 0 ( i ) θ j : = θ j − α 1 m [ ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) + λ θ j ] } ( j = 1 , … , n ) 重复\{\\\theta_0:=\theta_0-\alpha \frac{1}{m}\sum\limits^m_{i=1}(h_\theta(x^{(i)})-y^{(i)})x^{(i)}_0\\\theta_j:=\theta_j-\alpha\frac{1}{m}\left[\sum\limits^m_{i=1}(h_\theta(x^{(i)})-y^{(i)})x^{(i)}_j+\lambda\theta_j\right]\\\}\qquad (j=1,\dots,n) {θ0:=θ0αm1i=1m(hθ(x(i))y(i))x0(i)θj:=θjαm1[i=1m(hθ(x(i))y(i))xj(i)+λθj]}(j=1,,n)
θ j \theta_j θj θ j : = θ j ( 1 − α λ m ) − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) \theta_j:=\theta_j(1-\alpha\frac{\lambda}{m})-\alpha\frac{1}{m}\sum\limits^m_{i=1}(h_\theta(x^{(i)})-y^{(i)})x^{(i)}_j θj:=θj(1αmλ)αm1i=1m(hθ(x(i))y(i))xj(i)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值