今天学习了其它大牛的归并算法分析和例程,然后参照相应资料,也写了个非递归实现的归并算法,记录下来,便于自己以后的复习:
template<class T>
void Merge(T src[],T dest[],int iSrcStart, int iSrcEnd,int iSrcArrLength)//因为src中含有两个分别有序的序列,所以需要传入参数告知两个序列的起始
{
int i=iSrcStart-1;
int k=iSrcStart;//dest index
int j=iSrcEnd+1;
for(;iSrcStart<=iSrcEnd&&j<=iSrcArrLength;k++)
{
if (src[iSrcStart] < src[j])
{
dest[k]=src[iSrcStart++];
}
else
{
dest[k] = src[j++];
}
}
int l=0;
if (iSrcStart <= iSrcEnd)
{
for (;l<=iSrcEnd-iSrcStart;l++)
{
dest[k+l]=src[iSrcStart+l];
}
}
if (j<=iSrcArrLength)
{
for (l=0;l<=iSrcArrLength-j;l++)
{
dest[k+l]=src[j+l];
}
}
}
/************************************************************************/
/* 将src中相邻长度为 iMergeLength的序列两两归并到dest中 */
/************************************************************************/
template<class T>
void MergePass(T src[],T dest[],int iMergeLength, int iSrcLength)
{
int i=0;
int j=0;
while(i<iSrcLength-2*iMergeLength+1)
{
Merge(src,dest,i,iMergeLength+i-1,2*iMergeLength+i-1);
i+=2*iMergeLength;
}
if (iSrcLength-i+1> iMergeLength)
{
Merge(src,dest,i,iMergeLength+i-1,iSrcLength);
}
else
{
for (j=i;j<=iSrcLength;j++)
{
dest[j]=src[j];
}
}
}
//归并-非递归
template<class T>
void MergeSort(T srcArr[],int iArrLength)
{
int i=1;
int j=0;
int k=1;
T* tmp = new T[iArrLength+1];
memset(tmp,0,sizeof(T)*(iArrLength+1));
while(k<iArrLength)
{
MergePass(srcArr,tmp,k,iArrLength);
k=2*k;
MergePass(tmp,srcArr,k,iArrLength);
k=k*2;
}
delete[] tmp;
}
int main(int argc, char *argv[])
{
int a[9]={1,3,6,7,4,8,5,2,9};
double b[10]={1.0,10.0,2.0,5.0,6.0,4.0,3.0,8.0,7.0,9.0};
MergeSort(a,8);
MergeSort(b,9);
return 0 ;
}
这个对于内置类型的归并有效,自定义类型需要修改。