最近在做实验的时候,需要求得标准正太分布的分布函数的求值问题。于是在网上找到了相应的代码。但是在实际使用的时候发现了问题。
public static double gaosigongshi(double x) {
double y =(1/Math.sqrt(2*Math.PI))*Math.pow(Math.E, -x*x/2);
return y;
}
//upper表示积分的上界;lower表示下界;n表示间断数
public double gaosijifen(double upper, double lower, int n) {
double result = 0;
double unit = (upper-lower)/n;
double factor1 = unit / 3;
double[] x = new double[n+1];
for (int i = 0; i < x.length; i++) {
x[i] = lower + unit*i;
}
for (int i = 0; i < x.length; i++) {
if(i==0 || i==x.length-1) {
result += gaosigongshi(x[i]);
}else if(i%2 == 0) { // if i is even num.
result +=2* gaosigongshi(x[i]);;
}else { // if i is odd num.
result +=4* gaosigongshi(x[i]);;
}
}
result = factor1*result;
return result;}
问题一:
在调用gaosijifen(),这个函数时当n的值和积分范围相近时,对出现及较大的误差。例如gaosijifen(0, -100, 100)的返回结果是0.49760270822334585(原值应该是0.5),与原本的结果就相差了千分之2以上的误差。
问题二:
在调用gaosijifen()时,下界的值不是越小越好,太小了反而会出现问题。例如gaosijifen(0, -10000, 100000) >>0.5000000000002903
gaosijifen(0, -1000, 10000) >>0.5000000000000183
gaosijifen(0, -100, 10000) >> 0.500000000000001
gaosijifen(0, -100, 10000) >>0.5000000000000003
后来查了标准正太分布的密度函数,发现当x=-5时,查表的值就是0了,所以说比-5还小的拿来积分的时候,意义可能就没那么大了。因此在实际使用中,不用像数学公式那样来个负无穷。在误差可接受的范围内,下限去一个差不多的值就可以了。
问题三:
当当n的值和积分范围要小时,本方法就会出现很严重的错误;例如
gaosijifen(0, -1000, 100)的返回值是1.329807601338109。