熵值法原理、应用及其Python实现

本文介绍了熵值法在城市建设环境评估中的应用,通过计算指标权重和综合得分,揭示了贵州各市州城市建设环境特点。利用Python实现步骤详细,涵盖了数据预处理、标准化、权重计算和综合评价结果。
该文章已生成可运行项目,

熵值法是一种依据各指标值所包含的信息量的多少确定指标权重的客观赋权法,某个指标的熵越小,说明该指标值的变异程度越大,提供的信息量也就越多,在综合评价中起的作用越大,则该指标的权重也应越大。熵值法可单独进行综合评价;也可以与其他方法相结合,如层次分析法,用熵值法确定各指标的权重,然后运用层次分析法得到各个评价对象的综合得分。

1.熵值法的基本步骤

假设i(取值范围[1,m])表示评价对象,j(取值范围[1,n])表示评价指标。

  • 指标标准化。
    对于正向指标: x i j ′ = x i j − m i n ( x j ) m a x ( x j ) − m i n ( x j ) \mathop x\nolimits_{ij}^\prime = \frac{ {\mathop x\nolimits_{ij} - min(\mathop x\nolimits_{j} )}}{ {max(\mathop x\nolimits_{j} ) - min(\mathop x\nolimits_{j} ) }} xij=max(xj)min(xj)xijmin(xj)
    对于反向向指标: x i j ′ = m a x ( x j ) − x i j m a x ( x j ) − m i n ( x j ) \mathop x\nolimits_{ij}^\prime = \frac{ {max(\mathop x\nolimits_{j} )-\mathop x\nolimits_{ij}}}{ {max(\mathop x\nolimits_{j} ) - min(\mathop x\nolimits_{j} ) }} xij=max(xj)min(xj)max(xj)
本文章已经生成可运行项目
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值