第三章:哈希表
什么时候想到用哈希法,当我们遇到了要快速判断一个元素是否出现集合里的时候,就要考虑哈希法。
leetcode相关题目
● 242.有效的字母异位词
● 349. 两个数组的交集
● 202. 快乐数
● 1. 两数之和
242.有效的字母异位词
-
题目描述
给定两个字符串
*s*
和*t*
,编写一个函数来判断*t*
是否是*s*
的字母异位词。**注意:**若
*s*
和*t*
中每个字符出现的次数都相同,则称*s*
和*t*
互为字母异位词。示例 1:
输入: s = "anagram", t = "nagaram" 输出: true
-
解题思路
题目要判断每个字母出现次数,考虑用哈希表实现。由于26个字母是有限的,因此可以用大小为26的数组下标来按顺序映射英文字母。可以创建一个大小为26的数组record,数组下标对应英文字母,数组值对应该字母出现的次数。先统计字符串s的字母组成,遍历s,将s中的字母出现次数写进数组中。再遍历t,t中字母出现的次数要在record数组中减掉。最后检查record数组,若其中元素均为0,则说明两个字符串为字母异位词,否则则说明两个字符串元素组成不同。
-
代码实现
class Solution { public: bool isAnagram(string s, string t) { int record[26]={0};//数组定义加赋初值,给一个0,其他元素自动补0; //cout<<record[0]<<endl; //将字符串s中的元素映射到record中 for(int i=0;i<s.size();i++) { record[s[i]-'a']++; } //将字符串t中的元素从record中减去 for(int i=0;i<t.size();i++) { record[t[i]-'a']--; } //遍历record中的元素是否为0 for(int i=0;i<26;i++) { if(record[i]!=0) { return false; } cout<<record[i]<<endl; } return true; } };
-
总结
数组也是一种哈希表,下标代表key键值,元素值代表value。
统计英文字母出现次数就可以用哈希表来记录,键值key对应英文字母的排序,value记录字母出现的次数。
可以用s[i]-'a’将字符的ascii码转换为数组下标。
349. 两个数组的交集
-
题目描述
给定两个数组
nums1
和nums2
,返回 它们的交集 。输出结果中的每个元素一定是 唯一 的。我们可以 不考虑输出结果的顺序 。示例 1:
输入:nums1 = [1,2,2,1], nums2 = [2,2] 输出:[2]
-
解题思路
题目要求返回交集,元素唯一,不考虑顺序,那么返回的结果可以用无序集合的数据类型的来记录。
判断交集就是对nums1中数据进行遍历,依次判断元素是否在nums2中也有,如果有,则该元素就放入交集中。由于交集元素唯一,在遍历nums1中重复元素判断是无效的,因而遍历前应当将num1的元素先放入无序集合中进行去重。然后再进行遍历。
-
代码实现
class Solution { public: vector<int> intersection(vector<int>& nums1, vector<int>& nums2) { unordered_set<int> result;//存放结果的集合 unordered_set<int>nums1_set(nums1.begin(),nums1.end());//将数组1中的元素放入集合num1_set中 //遍历nums2 for(int num:nums2){ //如果num2中的元素在nums1—set中出现过,find找不到会返回指向end的迭代器 if(nums1_set.find(num)!=nums1_set.end()) { result.insert(num);//找到的话将num插入到result集合中去 } } //要求返回vector类型,需要利用set数据构造一个vector返回 return vector<int>(result.begin(),result.end()); } };
-
总结
编程时一定要先看返回值类型。本题的交集结果存储在set中,但是题目要求返回的是vector,最后在给返回值是要将set转化为vector。
遍历数组时,可以用for :这种写法
for(int numn:nums)
set的find函数返回的是迭代器,若找到,返回的是指向该元素的迭代器。若未找到,返回的是集合end的迭代器。
202. 快乐数
-
题目描述
编写一个算法来判断一个数
n
是不是快乐数。「快乐数」 定义为:
- 对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。
- 然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。
- 如果这个过程 结果为 1,那么这个数就是快乐数。
如果
n
是 快乐数 就返回true
;不是,则返回false
。 -
解题思路
判断这个数是否为快乐数的关键在于替换后的数字是否为1,若为1则是快乐数,若变为之前出现过的非1数,那么这个过程就陷入了无限循环。
-
代码实现
class Solution { public: //取一个数字各位上的数字平方和 int getsum(int n) { int sum=0; while(n) { sum+=(n%10)*(n%10); n=n/10; } return sum; } bool isHappy(int n) { //把每次求得的sum放入set中看是否出现过,若出现过说明进入无线循环 //若sum等于1说明要返回1了 unordered_set<int>s1; while(1) { int sum=getsum(n); if(s1.find(sum)!=s1.end())//在本次插入前判断 { return false; } if (sum==1) { return true; } else { s1.insert(sum);//否则将sum值插入set中 } //更新n n=sum; } } };
-
总结
取一个数n各位上的数字平方和,对n%10取模,可以得到最低位的数字,得到以后用n/10舍弃已经处理过的最低位,重复取模过程,处理新的最低位。用while(n)判断退出循环的条件。
平方和的结果可以存入set中,每次有新的结果就判断是否在set中出现过,若出现过就一定不是快乐数,若结果为1则说明是快乐数,并退出。
1. 两数之和
-
题目描述
给定一个整数数组
nums
和一个整数目标值target
,请你在该数组中找出 和为目标值target
的那 两个 整数,并返回它们的数组下标。你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。
你可以按任意顺序返回答案。
示例 1:
输入:nums = [2,7,11,15], target = 9 输出:[0,1] 解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。
-
解题思路
对一个数组遍历,然后判断target-num【i】是否在另一个数组中即可。由于同一元素不能重复出现,所以对num中的重复元素遍历存在无效工作。因而,考虑将num放入set中。但是,由于要求返回的时数组下标,若用set存储就丢失了下标的信息。因而需要将num放入map中,map的第一位用来存num中的不重复数据,第二位用来存对应的下标。
-
代码实现
class Solution { public: vector<int> twoSum(vector<int>& nums, int target) { //答案中不重复出现元素,因而先将nums放入set //又由于需要返回的是下标,因而需要将nums放入map //遍历nums,同时将其中的元素放入map unordered_map<int,int>m1; //对nums中元素进行遍历 for(int i=0;i<nums.size();i++) { unordered_map<int,int>::iterator it=m1.find(target-nums[i]); if(it!=m1.end()) { return {i,(*it).second}; } m1.insert(pair<int,int>(nums[i],i));//为什么插入这一句不能写循环最开始? //因为写最开始的话这个元素就把用了两次,i可以用它,target-num也可以是它,但是题目要求一个元素不能用两次。 cout<<i<<endl; } return {}; } };
-
总结
map中插入元素要先将元素组合成值对,pair,第一位存储数组元素值,第二位存对应索引。
map查找是按照第一位进行查找的,第一位的值唯一,因而要将数组元素值放在第一位。因为需要查找target的组成。