时间限制:1秒 空间限制:32768K 热度指数:255523
题目描述
输入一颗二叉树的跟节点和一个整数,打印出二叉树中结点值的和为输入整数的所有路径。路径定义为从树的根结点开始往下一直到叶结点所经过的结点形成一条路径。(注意: 在返回值的list中,数组长度大的数组靠前)
我们先找出递归的终止条件。
list.add(root.val);
target-=root.val;
if(target==0&&root.left==null&root.right==null) {
listAll.add(new ArrayList<Integer>(list));
}
当target==0.并且左右节点为空的时候,代表我们已经找到了一条满足条件的路径,这个时候,我们将路径添加到大集合中,注意这里为什么是 listAll.add(new ArrayList<Integer>(list)); 而不是 listAll.add(list),虽然二者功能相同,都是往大集合中添加小集合,但是,后者造成的影响是,每一个list集合都是连在上一个list集合的屁股后面。而前者,每次都new ,开辟了新的内存地址,这样保证了所有引用不都指向了同一个list...就是大集合中的每一个小集合不会连在一起。
其次来解释
list.remove(list.size()-1);
因为递归每次查询到叶子节点的时候,这个时候小集合list,会把所经过的所有节点都添加到list中,但是递归是会往会走的,在查询当前叶子节点上的一个节点,必须把当前叶子节点从list中去除,然后有会重新添加一个新的叶子节点,重新组合成一个新的list ,所以,这一行代码是必不可少的,我们可以拿一个具体的例子,在纸上算一下,就会明白的。
import java.util.ArrayList;
/**
public class TreeNode {
int val = 0;
TreeNode left = null;
TreeNode right = null;
public TreeNode(int val) {
this.val = val;
}
}
*/
public class Solution {
ArrayList<ArrayList<Integer>> listAll=new ArrayList<ArrayList<Integer>>();
ArrayList<Integer> list=new ArrayList<>();
public ArrayList<ArrayList<Integer>> FindPath(TreeNode root,int target){
if(root==null) return listAll;
list.add(root.val);
target-=root.val;
if(target==0&&root.left==null&root.right==null) {
listAll.add(new ArrayList<Integer>(list));
}
FindPath(root.left,target);
FindPath(root.right,target);
list.remove(list.size()-1);
return listAll;
}
}