HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1)
使用动态规划
public class Solution {
public int FindGreatestSumOfSubArray(int[] array) {
int [] dp =new int[array.length];
dp[0]=array[0];
int max=dp[0];
for(int i=1;i<array.length;i++){
dp[i]=array[i]+(dp[i-1]>0?dp[i-1]:0);
max=Math.max(max,dp[i]);
}
return max;
}
}
public class Solution {
public int FindGreatestSumOfSubArray(int[] array) {
//使用动态规划来做这种题,
int max=array[0];//用来存包含array[i]的连续数组的最大值,
int res=array[0];//用来存所有子数组的和的最大值
for (int i = 1; i < array.length; i++) {
max=Math.max(max+array[i], array[i]);
res=Math.max(res, max);
}
return res;
}
}