
机器学习
Main Theme
这个作者很懒,什么都没留下…
展开
-
机器学习资料汇总
网上一位CSDN博主总结的,在此转载:点击打开链接转载 2017-04-18 15:39:13 · 390 阅读 · 0 评论 -
GBDT算法理解
原文地址:原文地址转载 2018-07-31 11:15:02 · 254 阅读 · 0 评论 -
dropout理解
转载:https://blog.csdn.net/stdcoutzyx/article/details/49022443开篇明义,dropout是指在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率将其暂时从网络中丢弃。注意是暂时,对于随机梯度下降来说,由于是随机丢弃,故而每一个mini-batch都在训练不同的网络。dropout是CNN中防止过拟合提高效果的一个大杀器,但对于其为何有...转载 2018-07-12 21:36:52 · 1015 阅读 · 0 评论 -
局部加权线性回归(Locally weighted linear regression)
原文地址:首先我们来看一个线性回归的问题,在下面的例子中,我们选取不同维度的特征来对我们的数据进行拟合。 对于上面三个图像做如下解释:选取一个特征,来拟合数据,可以看出来拟合情况并不是很好,有些数据误差还是比较大针对第一个,我们增加了额外的特征,,这时我们可以看出情况就好了很多。这个时候可能有疑问,是不是特征选取的越多越好,维度越高越好呢?所以针对这个疑问,如最右边图,我们用5揭多项式使得数据点...转载 2018-06-25 10:24:24 · 2643 阅读 · 0 评论 -
矩阵求导法则
百度文库链接:点击打开链接维基百科链接:点击打开链接方便的话直接看百度文库那个,维基百科那个比较全(英文看的头大),但是维基百科那个“Ax对x的偏导是A的转置”有点懵,不应该是Ax的转置对x的偏导是A的转置么?百度文库那个就是。不要看那个什么还有列向量对列向量求导那个,网上很多都是那个,但那个不对,我看底下评论也很多指出不对,说去看维基百科。原创 2017-04-05 22:51:21 · 675 阅读 · 0 评论 -
反向传播算法
CSDN上的一篇文章:点击打开链接这篇文章的符号标注的十分清晰,有助于理解。其中风险函数直接用了代价函数,没有考虑正则项,不过影响不大。伪代码部分的梯度下降更新权值的公式里符号的上标和下标有点乱。总之很浅显易懂了。转载 2017-04-21 20:38:07 · 874 阅读 · 0 评论 -
卷积神经网络中的BP算法
链接:点击打开链接点击打开链接点击打开链接还是没彻底懂,先放在这。转载 2017-05-03 15:43:34 · 1124 阅读 · 0 评论 -
logistics regression
转载一篇关于logistics回归的文章:http://blog.csdn.net/dongtingzhizi/article/details/15962797CSDN竟然没有一键转载,不过好像涉及侵害版权啊,但是有的作者不经常上可能不会及时给予转载的权限...不喜欢用收藏!转载 2017-04-16 16:08:31 · 378 阅读 · 0 评论 -
梯度下降法
梯度下降法:点击打开链接随机梯度下降法:点击打开链接这个Gitbook上的Machine learning讲的很好,可以多翻翻。转载 2017-04-07 20:36:09 · 503 阅读 · 0 评论 -
Softmax回归
ufldl里写的很好:点击打开链接这篇是对风险函数的求导:点击打开链接这篇是对softmax函数求导:https://blog.csdn.net/behamcheung/article/details/71911133转载 2017-04-17 11:22:41 · 333 阅读 · 0 评论 -
二分类感知机
首先主要看这篇博客:点击打开链接,还配有小练习让你理解更清晰;其次是看这篇博客:点击打开链接,主要是对点到超平面距离的公式推导。转载 2017-04-18 17:12:22 · 853 阅读 · 0 评论 -
KKT条件介绍
原文地址:https://blog.csdn.net/johnnyconstantine/article/details/46335763最近学习的时候用到了最优化理论,但是我没有多少这方面的理论基础。于是翻了很多大神的博客把容易理解的内容记载到这篇博客中。因此这是篇汇总博客,不算是全部原创,但是基础理论,应该也都差不多吧。因才疏学浅,有纰漏的地方恳请指出。 KKT条件是解决最优...转载 2018-08-13 16:06:00 · 1356 阅读 · 0 评论