内部排序

内部排序:是指在排序期间元素全部存放在内存中的排序(本节例中所有排序均为升序排序)

外部排序:是指在排序期间

一、插入排序

1、直接插入排序:每次将一个待排序的记录,按其关键字的大小插入到前面已经排好序的子序列中,直到全部记录插入完成。代码如下:

void InsertSort(int A[],int n)
{
	for(int i=2;i<n;i++)
	{
		if(A[i]<A[i-1])
		{
			A[0]=A[i];
			int j;
			for(j=i-1;A[0]<A[j];j--)
				A[j+1]=A[j];
			A[j+1]=A[0];
		}
	}
}


2、希尔排序:先将待排序表分割成若干个形如L[i,i+d,i+2d,…,i+kd]的“特殊”子表,分别进行直接插入排序,当整个表中元素已呈“基本有序”时,再对全体记录进行一次直接插入排序。

目前为止尚未求得一个最好的增量序列,希尔提出的方法是d(1)=n/2,d(i+1)=d(i)/2。

希尔排序和直接插入排序的区别有以下:

a、前后记录位置的增量是k,不是1

b、A[0]只是暂存单元,不是哨兵,当j<0时,插入位置已到

代码如下:

void ShellSort(int A[],int n)
{
	for(int k=n/2;k>0;k=k/2)//增量序列
	{
		//将A[i]插入到有序增量子表中
		for(int i=k+1;i<n;i++)
		{
			if(A[i]<A[i-k])
			{
				A[0]=A[i];//暂存
				int j;
				for(j=i-k;j>0&&A[0]<A[j];j-=k)
					A[j+k]=A[j];
				A[j+k]=A[0];
			}
		}
	}
}

二、交换排序

1、冒泡排序:假设待排序列表长为n,从后往前(或从前往后)两两比较相邻元素值,若为逆序则交换,直到序列比较完,这是一趟冒泡排序,结果将最小的元素交换到待排序列的第一个位置。下一趟排序时,前一趟最小元素不再参与比较,待排序列减少一个元素。直到一趟排序完成没有任何元素进行了交换,算法终止。代码如下:

void BubbleSort(int A[],int n)
{
	for(int i=0;i<n-1;i++)
	{
		bool flag=false;//记录一趟排序是否有元素交换
		for(int j=n-1;j>i;j--)//一趟冒泡排序
		{
			if(A[j]<A[j-1])//需要交换
			{
				int temp=A[j];
				A[j]=A[j-1];
				A[j-1]=temp;
				flag=true;
			}
		}
		if(!flag)
			return;
	}
}
2、快速排序:基于分治法,在待排序列L[1…n]中任取一个元素pivot作为基准,通过一趟排序将待排序表划分成独立两部分L[1…k-1]和L[k+1…n],使得L[1…k-1]中所有元素小于等于pivot,L[k+1…n]中所有元素大于等于pivot,则pivot放在了其最终位置L(k)上,这个过程为一趟快速排序。代码如下:

//方法一:两个下标分别从首、尾向中间扫描
int Partition(int A[],int low,int high)
{
	int pivot=A[low];//以当前表的第一个值作为枢轴值,对表进行划分
	while(low<high)
	{
		while(low<high&&A[high]>=pivot) high--;
		A[low]=A[high];
		while(low<high&&A[low]<=pivot) low++;
		A[high]=A[low];
	}
	A[high]=pivot;
	return low;//返回存放枢轴的最终位置
}

//方法二:两个指针索引一前一后逐步向后扫描
int Partition(int A[],int low,int high)
{
	int pivot=A[high];
	int i=low-1;
	int temp;
	//从前向后
	for(int j=low;j<high;j++)
	{
		//A[i]待交换的位置,A[j]找到比pivot小的值放置A[i]处
		if(A[j]<=pivot)
		{
			i++;
			temp=A[i];
			A[i]=A[j];
			A[j]=temp;
		}
	}
	i+=1;
	temp=A[high];
	A[high]=A[i];
	A[i]=temp;
	return i;//A[low…i-1]的相对位置不变
}

void QuickSort(int A[],int low,int high)
{
	if(low<high)
	{
		int pivotpos=Partition(A,low,high);
		QuickSort(A,low,pivotpos-1);
		QuickSort(A,pivotpos+1,high);
	}
}

三、选择排序

1、简单选择排序:第1趟在后边的n个待排序元素(A[0]~A[n-1])中选取关键字最小的元素,作为有序子序列的第1个(A[0])个元素,然后后边的每一趟都减少一个元素,即上一趟中挑选出的最小元素,在后边剩下元素中选取最小元素。直到第n-1趟完成,待排序元素只剩下1个元素就不用再选了。代码如下:

void SelectSort(int A[],int n)
{
	for(int i=0;i<n-1;i++)
	{
		int min=i;
		for(int j=i+1;j<n;j++)
			if(A[min]>A[j]) min=j;
		if(min!=i)
		{
			int temp=A[min];
			A[min]=A[i];
			A[i]=temp;
		}
	}
}
2、堆排序

堆的定义如下:n个关键字序列L[1…n]称为堆,当且仅当序列满足:1<=i<=n/2

(1)L[i]<=L[2i] 且 L[i]<=L[2i+1] --小根堆

(2)L[i]>=L[2i] 且 L[i]>=L[2i+1] --大根堆
  构造初始堆:从最后一个非叶子结点起n/2,对当前子树进行筛选,使该子树称为堆。之后依次向前对各结点为根的子树进行筛选交换后可能会破坏下一级堆,于是继续采用相同方法构造下一级堆,直至该结点的子树构成对为止(向下调整)。反复利用以上筛选直到根结点。

  堆排序:通常输出堆顶元素后,将堆底元素送入堆顶,此时根结点不满足性质,将堆顶元素向下调整使其保持堆的性质(向下调整)。

  堆插入:先将新结点放在堆的末端,再对这个新结点执行向上调整操作

  所以,堆最重要的操作就是向上调整(AdjustUp)和向下调整(AdjustDown)。代码如下:

//构建一棵大根堆
void BuildMaxHeap(int A[],int len)
{
	for(int i=len/2;i>=1;i--)//从最后一个非叶子结点开始
		AdjustDown(A,i,len);
}

//对非叶子结点i向下调整
void AdjustDown(int A[],int k,int len)
{
	A[0]=A[k];//暂存
	for(int i=2*k;i<=len;i=i*2)//沿较大的子结点向下筛选
	{
		//根为A[k],子结点较大者为A[i]
		if(i<len&&A[i]<A[i+1])//选择较大的子结点与根结点替换并向下筛选
			i++;
		if(A[0]>=A[k])//满足大根堆的条件,终止向下筛选
			break;
		else
		{
			A[k]=A[i];
			k=i;
		}
	}
	A[k]=A[0];
}

//参数k为向上调整的结点,也是堆的元素个数
void AdjustUp(int A[],int k)
{
	A[0]=A[k];
	int i=k/2;
	while(i>0&&A[i]>=A[0])//根结点大于子结点满足大根堆性质跳出循环
	{
		//继续向上调整
		A[k]=A[i];
		k=i;
		i=i/2;
	}
	A[k]=A[0];//最终位置
}

void HeapSort(int A[],int len)
{
	BuildMaxHeap(A,len);//构造大根堆
	for(int i=len;i>1;i--)
	{
		//输出堆顶元素并和堆底元素交换
		cout<<A[1]<<" ";
		return;
		//令根结点为最大叶子结点
		A[1]=A[i];
		AdjustDown(A,1,i-1);
	}
}
四、归并排序

  二路归并排序:假定待排序表含有n个记录,则可以视为n个有序的子表,每个子表长度为1,然后两两合并,得到n/2个长度为2或为1的有序表,再两两合并…如此重复,直至合并成一个长度为n的有序表。代码如下:

void MergeSort(int A[],int low,int high)
{
	if(low<high)
	{
		int mid=(low+high)/2;//从中间划分两个子序列
		MergeSort(A,low,mid);//对左侧子序列进行递归排序
		MergeSort(A,mid+1,high);//对右侧子序列进行递归排序
		Merge(A,low,mid,high);//将前后相邻的两个有序表归并为一个有序表,需要一个辅助数组
	}
}

关于Merge()函数有两种方法:

第一种:使用一个辅助数组brr[]保存原数组的内容

//使用一个辅助数组brr[]保存原数组的内容
void Merge(int arr[],int low,int mid,int high)
{
	int i,j,k;
	int *brr=(int *)malloc(SIZE*sizeof(int));
	for(i=low;i<=high;i++)
		brr[i]=arr[i];
	for(i=low,j=mid+1,k=low;i<=mid&&j<=high;)
	{
		if(brr[i]<=brr[j])
			arr[k++]=brr[i++];
		else 
			arr[k++]=brr[j++];
	}
	while(i<=mid)
		arr[k++]=brr[i++];
	while(j<=high)
		arr[k++]=brr[j++];
	free(brr);
}
第二种:原地归并排序,不需要辅助数组。

//将数组长度为n的逆序
void reverse(int arr[],int n)
{
	int i=0,j=n-1;
	while(i<j)
	{
		int temp=arr[i];
		arr[i]=arr[j];
		arr[j]=temp;
		i++;j--;
	}
}

//将含有n个元素的数组向左循环移位i个位置
void exchange(int arr[],int n,int i)
{
	reverse(arr,i);
	reverse(arr+i,n-i);
	reverse(arr,n);
}

//原地归并排序,不需要辅助数组
void Merge(int arr[],int low,int mid,int high)
{
	int i=low,j=mid+1,k=high;
	while(i<j&&j<=k)
	{
		int step=0;
		while(i<j&&arr[i]<=arr[j])
			i++;
		while(j<=k&&arr[i]>=arr[j])
		{
			j++;
			step++;
		}
		exchange(arr+i,j-i,j-i-step);
		i=i+step;
	}
}



  多路归并排序:对于大文件的排序,待排序列的记录存储在外部存储器上,待排序列无法存入内存,需要在内存和外存之间进行多次数据交换,以达到整个文件的目的。多路归并排序可以将原文件分解成多个能够一次性装入内存的部分,分别把每一部分调入内存完成排序,然后对已排好序的子文件进行归并排序。但在k个归并段中选取最小的记录需要比较次数为k-1,为了降低选出每个记录需要比较次数,引入“败者树”的概念。


算法比较:

在初始序列基本有序时,插入排序最优,其次是冒泡排序,最差的是快速排序。

其中插入和冒泡是因为,如初始序列:123456798

冒泡需要第二趟遍历发现没有元素交换才判断已经有序了。

算法种类最好情况平均情况最坏情况空间复杂度是否稳定
直接插入排序O(n)O(n*n)O(n*n)O(1)
冒泡排序O(n)O(n*n)O(n*n)O(1)
简单选择排序O(n*n)O(n*n)O(n*n)O(1)
希尔排序   O(1)
快速排序O(nlongn)O(nlongn)O(n*n)O(1)
堆排序O(nlongn)O(nlongn)O(nlongn)O(1)
二路归并排序O(nlongn)O(nlongn)O(nlongn)O(n)
      











评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值