内部排序:是指在排序期间元素全部存放在内存中的排序(本节例中所有排序均为升序排序)
外部排序:是指在排序期间
一、插入排序
1、直接插入排序:每次将一个待排序的记录,按其关键字的大小插入到前面已经排好序的子序列中,直到全部记录插入完成。代码如下:
void InsertSort(int A[],int n)
{
for(int i=2;i<n;i++)
{
if(A[i]<A[i-1])
{
A[0]=A[i];
int j;
for(j=i-1;A[0]<A[j];j--)
A[j+1]=A[j];
A[j+1]=A[0];
}
}
}
2、希尔排序:先将待排序表分割成若干个形如L[i,i+d,i+2d,…,i+kd]的“特殊”子表,分别进行直接插入排序,当整个表中元素已呈“基本有序”时,再对全体记录进行一次直接插入排序。
目前为止尚未求得一个最好的增量序列,希尔提出的方法是d(1)=n/2,d(i+1)=d(i)/2。
希尔排序和直接插入排序的区别有以下:
a、前后记录位置的增量是k,不是1
b、A[0]只是暂存单元,不是哨兵,当j<0时,插入位置已到
代码如下:
void ShellSort(int A[],int n)
{
for(int k=n/2;k>0;k=k/2)//增量序列
{
//将A[i]插入到有序增量子表中
for(int i=k+1;i<n;i++)
{
if(A[i]<A[i-k])
{
A[0]=A[i];//暂存
int j;
for(j=i-k;j>0&&A[0]<A[j];j-=k)
A[j+k]=A[j];
A[j+k]=A[0];
}
}
}
}
二、交换排序
1、冒泡排序:假设待排序列表长为n,从后往前(或从前往后)两两比较相邻元素值,若为逆序则交换,直到序列比较完,这是一趟冒泡排序,结果将最小的元素交换到待排序列的第一个位置。下一趟排序时,前一趟最小元素不再参与比较,待排序列减少一个元素。直到一趟排序完成没有任何元素进行了交换,算法终止。代码如下:
void BubbleSort(int A[],int n)
{
for(int i=0;i<n-1;i++)
{
bool flag=false;//记录一趟排序是否有元素交换
for(int j=n-1;j>i;j--)//一趟冒泡排序
{
if(A[j]<A[j-1])//需要交换
{
int temp=A[j];
A[j]=A[j-1];
A[j-1]=temp;
flag=true;
}
}
if(!flag)
return;
}
}
2、快速排序:基于分治法,在待排序列L[1…n]中任取一个元素pivot作为基准,通过一趟排序将待排序表划分成独立两部分L[1…k-1]和L[k+1…n],使得L[1…k-1]中所有元素小于等于pivot,L[k+1…n]中所有元素大于等于pivot,则pivot放在了其最终位置L(k)上,这个过程为一趟快速排序。代码如下:
//方法一:两个下标分别从首、尾向中间扫描
int Partition(int A[],int low,int high)
{
int pivot=A[low];//以当前表的第一个值作为枢轴值,对表进行划分
while(low<high)
{
while(low<high&&A[high]>=pivot) high--;
A[low]=A[high];
while(low<high&&A[low]<=pivot) low++;
A[high]=A[low];
}
A[high]=pivot;
return low;//返回存放枢轴的最终位置
}
//方法二:两个指针索引一前一后逐步向后扫描
int Partition(int A[],int low,int high)
{
int pivot=A[high];
int i=low-1;
int temp;
//从前向后
for(int j=low;j<high;j++)
{
//A[i]待交换的位置,A[j]找到比pivot小的值放置A[i]处
if(A[j]<=pivot)
{
i++;
temp=A[i];
A[i]=A[j];
A[j]=temp;
}
}
i+=1;
temp=A[high];
A[high]=A[i];
A[i]=temp;
return i;//A[low…i-1]的相对位置不变
}
void QuickSort(int A[],int low,int high)
{
if(low<high)
{
int pivotpos=Partition(A,low,high);
QuickSort(A,low,pivotpos-1);
QuickSort(A,pivotpos+1,high);
}
}
三、选择排序
1、简单选择排序:第1趟在后边的n个待排序元素(A[0]~A[n-1])中选取关键字最小的元素,作为有序子序列的第1个(A[0])个元素,然后后边的每一趟都减少一个元素,即上一趟中挑选出的最小元素,在后边剩下元素中选取最小元素。直到第n-1趟完成,待排序元素只剩下1个元素就不用再选了。代码如下:
void SelectSort(int A[],int n)
{
for(int i=0;i<n-1;i++)
{
int min=i;
for(int j=i+1;j<n;j++)
if(A[min]>A[j]) min=j;
if(min!=i)
{
int temp=A[min];
A[min]=A[i];
A[i]=temp;
}
}
}
2、堆排序
堆的定义如下:n个关键字序列L[1…n]称为堆,当且仅当序列满足:1<=i<=n/2
(1)L[i]<=L[2i] 且 L[i]<=L[2i+1] --小根堆
(2)L[i]>=L[2i] 且 L[i]>=L[2i+1] --大根堆
构造初始堆:从最后一个非叶子结点起n/2,对当前子树进行筛选,使该子树称为堆。之后依次向前对各结点为根的子树进行筛选,交换后可能会破坏下一级堆,于是继续采用相同方法构造下一级堆,直至该结点的子树构成对为止(向下调整)。反复利用以上筛选直到根结点。
堆排序:通常输出堆顶元素后,将堆底元素送入堆顶,此时根结点不满足性质,将堆顶元素向下调整使其保持堆的性质(向下调整)。
堆插入:先将新结点放在堆的末端,再对这个新结点执行向上调整操作。
所以,堆最重要的操作就是向上调整(AdjustUp)和向下调整(AdjustDown)。代码如下:
//构建一棵大根堆
void BuildMaxHeap(int A[],int len)
{
for(int i=len/2;i>=1;i--)//从最后一个非叶子结点开始
AdjustDown(A,i,len);
}
//对非叶子结点i向下调整
void AdjustDown(int A[],int k,int len)
{
A[0]=A[k];//暂存
for(int i=2*k;i<=len;i=i*2)//沿较大的子结点向下筛选
{
//根为A[k],子结点较大者为A[i]
if(i<len&&A[i]<A[i+1])//选择较大的子结点与根结点替换并向下筛选
i++;
if(A[0]>=A[k])//满足大根堆的条件,终止向下筛选
break;
else
{
A[k]=A[i];
k=i;
}
}
A[k]=A[0];
}
//参数k为向上调整的结点,也是堆的元素个数
void AdjustUp(int A[],int k)
{
A[0]=A[k];
int i=k/2;
while(i>0&&A[i]>=A[0])//根结点大于子结点满足大根堆性质跳出循环
{
//继续向上调整
A[k]=A[i];
k=i;
i=i/2;
}
A[k]=A[0];//最终位置
}
void HeapSort(int A[],int len)
{
BuildMaxHeap(A,len);//构造大根堆
for(int i=len;i>1;i--)
{
//输出堆顶元素并和堆底元素交换
cout<<A[1]<<" ";
return;
//令根结点为最大叶子结点
A[1]=A[i];
AdjustDown(A,1,i-1);
}
}
四、归并排序
二路归并排序:假定待排序表含有n个记录,则可以视为n个有序的子表,每个子表长度为1,然后两两合并,得到n/2个长度为2或为1的有序表,再两两合并…如此重复,直至合并成一个长度为n的有序表。代码如下:
void MergeSort(int A[],int low,int high)
{
if(low<high)
{
int mid=(low+high)/2;//从中间划分两个子序列
MergeSort(A,low,mid);//对左侧子序列进行递归排序
MergeSort(A,mid+1,high);//对右侧子序列进行递归排序
Merge(A,low,mid,high);//将前后相邻的两个有序表归并为一个有序表,需要一个辅助数组
}
}
关于Merge()函数有两种方法:
第一种:使用一个辅助数组brr[]保存原数组的内容
//使用一个辅助数组brr[]保存原数组的内容
void Merge(int arr[],int low,int mid,int high)
{
int i,j,k;
int *brr=(int *)malloc(SIZE*sizeof(int));
for(i=low;i<=high;i++)
brr[i]=arr[i];
for(i=low,j=mid+1,k=low;i<=mid&&j<=high;)
{
if(brr[i]<=brr[j])
arr[k++]=brr[i++];
else
arr[k++]=brr[j++];
}
while(i<=mid)
arr[k++]=brr[i++];
while(j<=high)
arr[k++]=brr[j++];
free(brr);
}
第二种:原地归并排序,不需要辅助数组。
//将数组长度为n的逆序
void reverse(int arr[],int n)
{
int i=0,j=n-1;
while(i<j)
{
int temp=arr[i];
arr[i]=arr[j];
arr[j]=temp;
i++;j--;
}
}
//将含有n个元素的数组向左循环移位i个位置
void exchange(int arr[],int n,int i)
{
reverse(arr,i);
reverse(arr+i,n-i);
reverse(arr,n);
}
//原地归并排序,不需要辅助数组
void Merge(int arr[],int low,int mid,int high)
{
int i=low,j=mid+1,k=high;
while(i<j&&j<=k)
{
int step=0;
while(i<j&&arr[i]<=arr[j])
i++;
while(j<=k&&arr[i]>=arr[j])
{
j++;
step++;
}
exchange(arr+i,j-i,j-i-step);
i=i+step;
}
}
多路归并排序:对于大文件的排序,待排序列的记录存储在外部存储器上,待排序列无法存入内存,需要在内存和外存之间进行多次数据交换,以达到整个文件的目的。多路归并排序可以将原文件分解成多个能够一次性装入内存的部分,分别把每一部分调入内存完成排序,然后对已排好序的子文件进行归并排序。但在k个归并段中选取最小的记录需要比较次数为k-1,为了降低选出每个记录需要比较次数,引入“败者树”的概念。
算法比较:
在初始序列基本有序时,插入排序最优,其次是冒泡排序,最差的是快速排序。
其中插入和冒泡是因为,如初始序列:123456798
冒泡需要第二趟遍历发现没有元素交换才判断已经有序了。
算法种类 | 最好情况 | 平均情况 | 最坏情况 | 空间复杂度 | 是否稳定 |
直接插入排序 | O(n) | O(n*n) | O(n*n) | O(1) | 是 |
冒泡排序 | O(n) | O(n*n) | O(n*n) | O(1) | 是 |
简单选择排序 | O(n*n) | O(n*n) | O(n*n) | O(1) | 否 |
希尔排序 | O(1) | 否 | |||
快速排序 | O(nlongn) | O(nlongn) | O(n*n) | O(1) | 否 |
堆排序 | O(nlongn) | O(nlongn) | O(nlongn) | O(1) | 否 |
二路归并排序 | O(nlongn) | O(nlongn) | O(nlongn) | O(n) | 是 |