postgresql 优势

对比Mysql

1.PostgreSQL的稳定性极强,Innodb等引擎在崩溃、断电之类的灾难场景下抗打击能力有了长足的进步,然而很多Mysql用户都遇到过Server级的数据库丢失的场景—Mysql系统库是MyISAM的,相较而言,PG数据库在这方面要好一些。

2.任何系统都有他的性能极限,在高并发读写,负载逼近极限下,PG的性能指标仍然可以维持双曲线甚至对数曲线,到顶峰之后不再下降,而MySQL明细出现一个波峰后下滑。

3.PG多年在GIS领域处于优势地位,因为它有丰富的几何类型,实际上不止几何类型,PG中有大量的字典、数组、bitmap等数据类型,相比之下MaySQL就差很多,insagram就是因为PG的空间数据库扩展POSTGIS远远强于MySQL的my spatial而采用PGSQL的。

4.PG的“无锁定”特性非常突出,甚至包括vacuum这样的整理数据空间的操作,这个和PGSSQL的MVCC实现有关系。

5.PG的可以使用函数和条件索引,这使得PG数据库的调优非常灵活,mysql就没有这个功能,条件索引在web应用中很重要。

6.PG有极其强悍的SQL编程能力,有丰富的统计函数和统计语法支持,比如分析函数(Oracle的叫法,PG里面叫Window函数),还可以用多种语言来写存储过程,对于R的支持也很好。这一点上MySQL就差的很远,很多分析功能那个都没有,腾讯内部数据存储主要是Mysql,但是主要的数据分析就是Hadoop+PGsql。

7.PG的有很多中集群架构可以选择,plproxy可以支持语句级的镜像或者分片,slony可以进行字段级的同步设置,standby可以构建WAL文件级或者流式的读写分离集群,同步频率和集群策略调整方便,操作非常简单。

8.一般关系型数据库的字符串有限定长度8k左右,无限长Text类型的功能受限,只能作为外部大数据访问。而PG的TEXT类型可以直接方法,SQL语法内置正则表达式,可以索引,还可以全文检索,或使用xml xpath。用PG的话,文档数据库就可以省略了

9.对于web应用来说,复制的特性很重要,Mysql到现在也是异步复制,pgsql可以做到同步,异步,半同步复制。还有mysql的同步是基于binlog复制,类似oracle golden gate, 是基于stream的复制,做到同步很困难,这种方式更加适合异地复制,pgsql的复制基于wal,可以做到同步复制。同时pgsql还提供stream复制。

10.Pgsql对于numa架构的支持要比mysql强一些,比mysql对于读的性能要好些,pgsql提交可以完全异步,而mysql的内存表不够实用(表锁原因)

可扩展性
1.存储的功能和程序
2.程序语言:PL/PGSQL, Perl, Python (more)
3.外部数据包装器:使用标准SQL接口连接到其他数据库或流
4.许多提供附加功能的扩展,包括PostGIS

并发性,性能
1.索引
2.高级索引
3.复杂的查询计划期/优化器
4.交互
5.多版本并发控制(MVCC)
6.读取查询的并行化和构建B树索引
7.表分区
8.Sql标准中定义的所有事物隔离级别,包括Serializable
9.即时表达式汇编(JIT)

检索优势
*全文检索

=======================================================================

检索数据(常用)

检索单个列:
SELECT pname FROM product
 
检索多个列:
SELECT pname,market_price,is_hot FROM product
 
检索所有列:
SELECT * FROM product
 
过滤检索结果中的重复数据:
SELECT DISTINCT market_price FROM product
DISTINCT关键字:
1、返回不同的值,使用时放在列名的前面
2、多查询一个及以上列时,除非你查询的所有列的数据都不同,否则所有行都将被检索出来
 
限制检索结果:
SELECT pname FROM product LIMIT 5,5
limit5,5指示mysql返回从行5开始的5行记录

排序检索数据:(常用)

排序数据
SELECT pname FROM product ORDER BY pname
 
按多个列排序数据
SELECT pid,market_price,pname FROM product ORDER BY market_price,pname
按多个列排序时,排序列之间用,隔开,并且按列的顺序来排序数据,先排价格,后排名称
 
指定排序方向
降序排序(按照价格降序排序)
SELECT pid,market_price,pname FROM product ORDER BY market_price DESC
 
升序排序(mysql查询时默认就是升序排序)
SELECT pid,market_price,pname FROM product ORDER BY market_price ASC
 
找出价格最贵的商品(使用order BYlimit关键字)
SELECT market_price FROM product ORDER BY market_price DESC LIMIT 1

过滤数据:(常用)

使用WHERE子句
 
价格等于19800的商品
SELECT pname,market_price FROM product WHERE market_price=19800
 
价格小于于19800的商品
SELECT pname,market_price FROM product WHERE market_price<19800
 
价格大于800的商品
SELECT pname,market_price FROM product WHERE market_price>800
 
价格在80010000之间
SELECT pname,market_price FROM product WHERE market_price BETWEEN 800 AND 10000
 
where中的操作符有以下几个
= 等于
<> 不等于
!= 不等于
< 小于
<= 小于等于

> 大于
>= 大于等于
BETWEEN 在指定的两个值之间

数据过滤:(常用)

组合where语句
 
and操作符(同时符合where后面的条件)
SELECT pname,market_price FROM product WHERE market_price>1000 AND is_hot=0
 
or操作符(只需要符合where后面的一个条件的结果都会显示出来)
SELECT pname,market_price FROM product WHERE market_price>1000 OR is_hot=0
 
IN操作符(用来指定条件范围)
SELECT pname,market_price FROM product WHERE market_price IN(238,19800,1120) ORDER BY pname
 
NOT操作符(否定它之后所跟的条件)
SELECT pname,market_price FROM product WHERE market_price NOT IN(238,19800,1120) ORDER BY pname

用通配符进行过滤(常用)

like操作符(通配符 模糊搜索)
 
%通配符(找出product表中所有商品名以韩版开头的商品)
SELECT pname FROM product WHERE pname LIKE '韩版%'
 
找出product表中商品名称含有“女”的商品,不管开头结尾是什么内容
SELECT pname FROM product WHERE pname LIKE '%女%'
 
下划线_通配符(用途和%一样,不过_只匹配单个字符)
 
SELECT pname,market_price FROM product WHERE market_price LIKE '_99'

正则表达式搜索(常用)

基本字符串匹配
 
SELECT pname FROM product WHERE pname REGEXP '韩版' ORDER BY pname
使用正则表达式需要用REGEXP关键字,并在REGEXP后面跟上正则表达式内容
 
SELECT pname FROM product WHERE pname REGEXP '.版' ORDER BY pname
.是正则表达式语言中一个特殊的字符。它表示匹配任意一个字符
 
Mysql中的正则表达式不区分大小写,如果要区分大小写可以使用BINARY
SELECT pname FROM product WHERE pname REGEXP BINARY 'Abc' ORDER BY pname
 
OR匹配
SELECT pname FROM product WHERE pname REGEXP 'a|b'
 
几种常见的正则表达式
[0-9] 匹配0-9之间的数字
[123] Ton 匹配1 Ton或者2 Ton或者3 Ton
\\. 匹配特殊字符.
[:alnum:] 任意字母和数字(同[a-zA-Z0-9][:alpha:] 任意字符(同[a-zA-Z][:blank:] 空格和制表(同[\\t][:cntrl:] ASCII控制字符(ASCII 031127[:digit:] 任意数字(同[0-9][:graph:][:print:]相同,但不包括空格
[:LOWER:] 任意小写字母(同[a-z][:print:] 任意可打印字符
[:punct:] 既不在[:alnum:]又不在[:cntrl:]中的任意字符
[:SPACE:] 包括空格在内的任意空白字符(同[\\f\\n\\r\\t\\v][:UPPER:] 任意大写字母(同[A-Z][:xdigit:] 任意十六进制数字(同[a-fA-F0-9])
 
 
匹配多个实例
* 0个或多个匹配
+ 1个或多个匹配(等于{1,})
? 0个或1个匹配(等于{0,1})
{n} 指定数目的匹配
{n,} 不少于指定数目的匹配
{n,m} 匹配数目的范围(m不超过255)
 
 
定位符
^ 文本的开始
$ 文本的结尾
[[:<:]] 词的开始
[[:>:]] 词的结尾

创建计算字段

连接字段(将商品名称和商品价格连接起来)
SELECT CONCAT(pname,'(',market_price,')') FROM product ORDER BY pname
CONCAT()需要一个或多个指定的串,各个串之间用逗号分隔。
 
AS 给字段赋予别名
SELECT CONCAT(pname,'(',market_price,')') AS nameAndPrice FROM product ORDER BY pname
 
执行算术运算
SELECT pname,market_price,shop_price,market_price+shop_price AS sumprice FROM product

使用数据处理函数 (部分常用)

文本处理函数
LEFT() 返回串左边的字符 (常用)
LENGTH() 返回串的长度(常用)
LOCATE() 找出串的一个子串
LOWER() 将串转换为小写
LTRIM() 去掉串左边的空格
RIGHT() 返回串右边的字符
RTRIM() 去掉串右边的空格
SOUNDEX() 返回串的SOUNDEX值
SUBSTRING() 返回子串的字符
UPPER() 将串转换为大写(常用)
 
 
日期和时间处理函数
ADDDATE() 增加一个日期(天、周等)
ADDTIME() 增加一个时间(时、分等)
CURDATE() 返回当前日期(常用)
CURTIME() 返回当前时间(常用)
DATE() 返回日期时间的日期部分
DATEDIFF() 计算两个日期之差(常用)
DATE_ADD() 高度灵活的日期运算函数
DATE_FORMAT() 返回一个格式化的日期或时间串
DAY() 返回一个日期的天数部分
DAYOFWEEK() 对于一个日期,返回对应的星期几
HOUR() 返回一个时间的小时部分
MINUTE() 返回一个时间的分钟部分(常用)
MONTH() 返回一个日期的月份部分(常用)
NOW() 返回当前日期和时间(常用)
SECOND() 返回一个时间的秒部分
TIME() 返回一个日期时间的时间部分
YEAR() 返回一个日期的年份部分(常用)
 
 
数值处理函数
ABS() 返回一个数的绝对值
COS() 返回一个角度的余弦
EXP() 返回一个数的指数值
MOD() 返回除操作的余数
PI() 返回圆周率
RAND() 返回一个随机数
SIN() 返回一个角度的正弦
SQRT() 返回一个数的平方根
TAN() 返回一个角度的正切

汇总数据

聚集函数
AVG() 返回某列的平均值
COUNT() 返回某列的行数
MAX() 返回某列的最大值
MIN() 返回某列的最小值
SUM() 返回某列值之和
 
SELECT AVG(market_price) FROM product
 
SELECT MAX(market_price) FROM product
 
SELECT SUM(market_price) FROM product

分组数据

分组函数(常用)
GROUP BY 按照名称分组,查询出表中相同名称的商品各有多少件
SELECT pname,COUNT(*) FROM product GROUP BY pname
 
HAVING 过滤分组
SELECT pname,COUNT(*) FROM product GROUP BY pname HAVING COUNT(*)>2
 
HAVINGWHERE的差别 这里有另一种理解方法,WHERE在数据
分组前进行过滤,HAVING在数据分组后进行过滤。这是一个重
要的区别,WHERE排除的行不包括在分组中。这可能会改变计
算值,从而影响HAVING子句中基于这些值过滤掉的分组。
 
SELECT语句的执行顺序
 
SELECT 要返回的列或表达式 是
FROM 从中检索数据的表 仅在从表选择数据时使用
WHERE 行级过滤 否
GROUP BY 分组说明 仅在按组计算聚集时使用
HAVING 组级过滤 否
ORDER BY 输出排序顺序 否
  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
PostgreSQL主要优势:   1. PostgreSQL完全免费,而且是BSD协议,如果你把PostgreSQL改一改,然后再拿去卖钱,也没有人管你,这一点很重要,这表明了PostgreSQL数据库不会被其它公司控制。oracle数据库不用说了,是商业数据库,不开放。而MySQL数据库虽然是开源的,但现在随着SUN被oracle公司收购,现在基本上被oracle公司控制,其实在SUN被收购之前,MySQL中最重要的InnoDB引擎也是被oracle公司控制的,而在MySQL中很多重要的数据都是放在InnoDB引擎中的,反正我们公司都是这样的。所以如果MySQL的市场范围与oracle数据库的市场范围冲突时,oracle公司必定会牺牲MySQL,这是毫无疑问的。   2. 与PostgreSQl配合的开源软件很多,有很多分布式集群软件,如pgpool、pgcluster、slony、plploxy等等,很容易做读写分离、负载均衡、数据水平拆分等方案,而这在MySQL下则比较困难。 3. PostgreSQL源代码写的很清晰,易读性比MySQL强太多了,怀疑MySQL的源代码被混淆过。所以很多公司都是基本PostgreSQL做二次开发的。 4. PostgreSQL在很多方面都比MySQL强,如复杂SQL的执行、存储过程、触发器、索引。同时PostgreSQL是多进程的,而MySQL是线程的,虽然并发不高时,MySQL处理速度快,但当并发高的时候,对于现在多核的单台机器上,MySQL的总体处理性能不如PostgreSQL,原因是MySQL的线程无法充分利用CPU的能力。
众所周知,人工智能是当前最热门的话题之一, 计算机技术与互联网技术的快速发展更是将对人工智能的研究推向一个新的高潮。 人工智能是研究模拟和扩展人类智能的理论与方法及其应用的一门新兴技术科学。 作为人工智能核心研究领域之一的机器学习, 其研究动机是为了使计算机系统具有人的学习能力以实现人工智能。 那么, 什么是机器学习呢? 机器学习 (Machine Learning) 是对研究问题进行模型假设,利用计算机从训练数据中学习得到模型参数,并最终对数据进行预测和分析的一门学科。 机器学习的用途 机器学习是一种通用的数据处理技术,其包含了大量的学习算法。不同的学习算法在不同的行业及应用中能够表现出不同的性能和优势。目前,机器学习已成功地应用于下列领域: 互联网领域----语音识别、搜索引擎、语言翻译、垃圾邮件过滤、自然语言处理等 生物领域----基因序列分析、DNA 序列预测、蛋白质结构预测等 自动化领域----人脸识别、无人驾驶技术、图像处理、信号处理等 金融领域----证券市场分析、信用卡欺诈检测等 医学领域----疾病鉴别/诊断、流行病爆发预测等 刑侦领域----潜在犯罪识别与预测、模拟人工智能侦探等 新闻领域----新闻推荐系统等 游戏领域----游戏战略规划等 从上述所列举的应用可知,机器学习正在成为各行各业都会经常使用到的分析工具,尤其是在各领域数据量爆炸的今天,各行业都希望通过数据处理与分析手段,得到数据中有价值的信息,以便明确客户的需求和指引企业的发展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小猪跑得快-Fly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值