P3:Pytorch实现天气识别

- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/rnFa-IeY93EpjVu0yzzjkw) 中的学习记录博客**
- **🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)**

一、前期准备

1、设置GPU
如果设备上支持GPU就使用GPU,否则使用CPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torchvision import transforms, datasets

import os, PIL, pathlib, random

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

device

·torchvision.transforms解析:

在 Pytorch 中 torchvision.transforms 模板提供了一系列用于图像预处理和数据增强的工具 (transforms),这些工具可以方便对图像进行各种变换操作。

有以下几个作用:
1、数据预处理:
将原始图像数据转换成模型所需要的格式(例如:归一化、调整大小、转换为张量等)。

#举例
trans_ds = torchvision.datasets.MNIST('data',
										train = True,
										transform = torchvision.transforms.ToTensor(),#将数据转换成Tensor
										download = True)

2、数据增强:
通过对数据图像进行随机变换(如旋转、翻转、剪裁等),增加数据多样性,防止数据过拟合。

还有其他用法,这里不详细展开。

·解析以下代码:

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

这段代码的作用是设置设备。

device : 这是一个变量,用于储存创建的Pytorch的设备对象。

torch.device() : 这个函数用于创建一个 Pytorch 的设备对象。根据条件表达式的结果,如果CUDA可用,则将设备设置为‘cuda’(即GPU),否则设置为‘CPU

torch.cuda.is_avaliable() : 这个函数用来检查系统中是否有可用的CUDA(GPU)设备。如果返回True,则表示系统支持CUDA,否则返回False

简单来说,这段代码通过判断系统的GPU是否可用,来动态选择将计算任务放在GPU,还是在CPU上进行处理,以实现最佳性能。

2、导入数据

data_dir = 'E:\data\第5天-没有加密版本\第5天\weather_photos'
data_dir = pathlib.Path(data_dir) #将其转换成Path对象
data_paths = list(data_dir.glob('*')) #path_dir是Path对象;.glob()是路径匹配方法;'*'表示匹配所有的文件跟文件夹,最后将其转换从列表(list)
classeNames = [str(path).split("\\")[5] for path in data_paths] #通过split()函数将路径进行分割获得各个文件的所属名称,并存储到ClasseName
classeNames #打印每个文件的名称

步骤一:使用pathlib.Path() : 将字符串格式的文件/目录路径转换成 pathlib.Path 对象。
步骤二:使用data_dir.glob(): 获取所有的文件路径,并存储在data_paths中。
步骤三:通过split()函数对data_paths中的每个文件执行分割操作,获得各个文件所属的类别名称,并存储在classeNames中。
步骤四:打印classeNames列表,显示每个文件所属的类别名称。

import matplotlib.pyplot as plt
from PIL import Image
#指定图像文件夹路径
image_folder = 'E:\data\第5天-没有加密版本\第5天\weather_photos\cloudy'

#获取文件夹中的所有图像文件
 #image是一个列表获取f;os.listdir是获取该目录(文件夹)下的所有子目录;endswith()是来判断该文件是否以括号内的格式结尾,是返回True
image_files = [f for f in os.listdir(image_folser) if f.endswith((".jpg",".png",".jpeg"))] 

#创建Matplotlib图像
fig,axes = plt.subplots(3,8,figsize = (16,6)) #生成一个3行8列的子图网格

#使用列表推导式加载和显示图像
for ax,img_file in zip(axes.flat,image_files):
	img_path = os.path.join(image_folder,img_file)
	img = Image.open(img_path)
	ax.imshow(img)
	ax,axis('off')
#显示图像
plt.tight_layout()
plt.show()

axes.flat : 将axes(子图矩阵,如3行*8列)展平为一维迭代器;
os.listdir:是获取该目录(文件夹)下的所有子目录;
endswith(): 判断字符串是否以指定的后缀结尾,如果以指定后缀结尾返回 True,否则返回 False;
zip(): 将一组图像文件与对应的绘图区域(即子图)进行关联
os.path.join() : 将多个路径片段拼接成一个完整的路径;
Image.open() :打开图像文件,并将其加载为图像对象;
plt.tight_layout() : 自动调整子图的布局;

total_datadir = 'E:\data'

train_transforms = transforms.Compose([
	transforms.Resize([224,224]),       #将输入图片resize成统一尺寸
	transforms.ToTensor(),              #将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
	transforms.Normalize(               #标准化处理-->转换成标准正太分布(高斯分布),是模型更容易收敛
		mean = [0.485,0.456,0.406],     #数据集的均值
		std = [0.229,0.224,0.225])      #数据集的标准差
])
total_data = datasets.imageFolder(total_datadir,transform = train_trainsforms) 
total_data

datasets.imageFolder : 自动将图像数据加载为适合训练和测试的格式,并支持多种数据预处理操作;

划分数据集

train_size = int(0.8*len(total_data))      #train_size为训练集大小,大小为总体数据大小的80%
test_size = len(total_data) - train_size   #test_size为测试集大小,总数据集大小减去训练集大小
train_dataset,test_dataset = torch.utils.data.random_split(total_data,[train_size,test_size])
train_dataset,test_dataset

torch.utils.data.random_split() : 进行数据集划分。该方法将总体数据total_data按照指定的大小比例([train_size, test_size])随机划分为训练集和测试集,并将划分结果分别赋值给train_datasettest_dataset两个变量。

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
										 batch_size = batch_size,
										 shuffle = True,
										 num_workers = 1)
test_dl = torch.utils.dat.DataLoader(test_dataset,
									 batch_size = batch_size,
									 shuffle = True,
									 num_workers = 1
for X,y in test_dl:
	print("Shape of X [N,C,H,W] :",X.shape)
	print("Shape of y :",y.shape,y.dtype)
	break							 

train_dlDataLoader 对象,它可以对数据集进行分批处理,并且可以自动进行数据 shuffling,即打乱数据集的顺序。 在模型训练过程中,我们通常需要使用 DataLoader 来将数据分批加载到模型中进行训练。 需要注意的是,上述代码中并没有指定批次的大小,因为这个参数会在 DataLoader 初始化时进行指定。

Shape of X [N, C, H, W]:

N: Batch size (批大小,即一次处理的样本数量)
C: Channels (通道数,对于RGB图像通常是3)
H: Height (图像高度)
W: Width (图像宽度)

torch.utils.data.DataLoader()参数详解

torch.utils.data.DataLoaderPyTorch 中用于加载和管理数据的一个实用工具类。它允许你以小批次的方式迭代你的数据集,这对于训练神经网络和其他机器学习任务非常有用。DataLoader 构造函数接受多个参数,下面是一些常用的参数及其解释:

  1. dataset(必需参数):这是你的数据集对象,通常是 torch.utils.data.Dataset 的子类,它包含了你的数据样本。
  2. batch_size(可选参数):指定每个小批次中包含的样本数。默认值为 1
  3. shuffle(可选参数):如果设置为 True,则在每个 epoch 开始时对数据进行洗牌,以随机打乱样本的顺序。这对于训练数据的随机性很重要,以避免模型学习到数据的顺序性。默认值为 False
  4. num_workers(可选参数):用于数据加载的子进程数量。通常,将其设置为大于 0 的值可以加快数据加载速度,特别是当数据集很大时。默认值为 0,表示在主进程中加载数据。
  5. pin_memory(可选参数):如果设置为 True,则数据加载到 GPU 时会将数据存储在 CUDA 的锁页内存中,这可以加速数据传输到 GPU。默认值为 False
  6. drop_last(可选参数):如果设置为 True,则在最后一个小批次可能包含样本数小于 batch_size 时,丢弃该小批次。这在某些情况下很有用,以确保所有小批次具有相同的大小。默认值为 False
  7. timeout(可选参数):如果设置为正整数,它定义了每个子进程在等待数据加载器传递数据时的超时时间(以秒为单位)。这可以用于避免子进程卡住的情况。默认值为 0,表示没有超时限制。
  8. worker_init_fn(可选参数):一个可选的函数,用于初始化每个子进程的状态。这对于设置每个子进程的随机种子或其他初始化操作很有用。

构建简单的CNN网络

对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。

import torch.nn.functional as F
class Network_bn(nn.Module):               #Network_bn继承了nn.Module
	def __init__(self):                    #构建类的方法
		supper(Network_bn,self).__init__() #supper是对父类进行重写
		"""
		nn.conv2d()函数:
		第一个参数(in_channels)是输入的channel数量
		第二个参数(out_channels)是输出的channel数量
		第三个参数(kernel_size)是卷积核大小
		第四个参数(stride)是步长,默认为1
		第五个参数(padding)是填充大小,默认为0
		"""
		#特征提取
		self.conv1 = nn.Conv2d(in_channels = 3,out_channels = 12,kernel_size = 5,stride = 1,padding = 0) #卷积层
		self.bn1 = nn.BatchNorm2d(12)                                                                    #批量标准化
		self.conv2 = nn.Conv2d(in_channels = 12,out_channels = 12,kernel_size = 5,stride = 1,padding = 0)
		self.bn2 = nn.BatchNorm2d(12)
		self.pool1 = nn.MaxPool2d(2,2)                                                                   #池化层
		self.conv3 = nn.Conv2d(in_channels = 12,out_channels = 24,kernel_size = 5,stride = 1,padding = 0)
		self.bn3 = nn.BatchNorm2d(24)
		self.conv4 = nn.Conv2d(in_channel = 24,out_channels = 24,kernel_size = 5 , stride = 1,padding =0)
		self.bn4 = nn.BatchNorm2d(24)
		self.pool2 = nn.MaxPool2d(2,2)
		self.fc1 = nn.Linear(24*50*50,len(classeNames))                                                  #连接层

	def forward(self,x):
		x = F.relu(self.bn1(self.conv1(x)))
		x = F.relu(self.bn2(self.conv2(x)))
		x = self.pool1(x)
		x = F.relu(self.bn3(self.conv3(x)))
		x = F.relu(self.bn4(self.conv4(x)))
		x = self.pool2(x)
		x = x.view(-1,24*50*50)
		x = self.fc1(x)
		
		return x
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

model = Network_bn.to(device)
model
		

⭐1. torch.nn.Conv2d()详解

函数原型:

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

关键参数说明:
in_channels ( int ) – 输入图像中的通道数
out_channels ( int ) – 卷积产生的通道数
kernel_size ( int or tuple ) – 卷积核的大小
stride ( int or tuple , optional ) – 卷积的步幅。默认值:1
padding ( int , tuple或str , optional ) – 添加到输入的所有四个边的填充。默认值:0
padding_mode (字符串,可选) – ‘zeros’, ‘reflect’, ‘replicate’或’circular’. 默认:‘zeros’

⭐2. torch.nn.Linear()详解

函数原型:

torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)

关键参数说明:
in_features:每个输入样本的大小
out_features:每个输出样本的大小

⭐3. torch.nn.MaxPool2d()详解

函数原型:

torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)

关键参数说明:
kernel_size:最大的窗口大小
stride:窗口的步幅,默认值为kernel_size
padding:填充值,默认为0
dilation:控制窗口中元素步幅的参数

大家注意一下在卷积层和全连接层之间,我们可以使用之前是torch.flatten()也可以使用我下面的x.view()亦或是torch.nn.Flatten()torch.nn.Flatten()TensorFlow中的Flatten()层类似,前两者则仅仅是一种数据集拉伸操作(将二维数据拉伸为一维),torch.flatten()方法不会改变x本身,而是返回一个新的张量。而x.view()方法则是直接在原有数据上进行操作。

训练模型

设置超参数

loss_fn = nn.CrossEntropyLoss() #创建损失函数
learn_rate = 1e-4 #学习率
opt = torch.optim.SGD(model.parameters(),lr =learn_rate)

编写训练函数

#训练循环
def train(dataloader,model,loss_fn,optimizer):
	size = len(dataloader.dataset) #训练集的大小,一共60000张
	num_batches = len(dataloader)  #批次数量,1875(60000/32)
	train_loss,train_acc = 0 ,0    #初始化训练损失值跟正确率
	for X,y in dataloader:
		X,y = X.to(device),y.to(device)
		
		#计算预测误差
		pred = model(x)            #网络输出
		loss = loss_fn(pred,y)     #计算网络输出与真实值之间的差距,targets为真实值,计算二者差值
		
		#反向传播
		optimizer.zero_grad()      #grad属性归零
		loss.backward()            #反向传播(计算梯度值)
		optimizer.step()           #每一步自动更新 (自动更新梯度值)
		
		#记录acc与loss
		train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
		train_loss += loss.item()
	
	train_acc /= size
	train_loss /= num_batches
	return train_acc,train_loss
  1. optimizer.zero_grad()
    函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。

  2. loss.backward()
    PyTorch的反向传播(即tensor.backward())是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。
    具体来说,torch.tensorautograd包的基础类,如果你设置tensorrequires_gradsTrue,就会开始跟踪这个tensor上面的所有运算,如果你做完运算后使用tensor.backward(),所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。
    更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个wrequires_gradsTrue,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用loss.backward()后,会一层层的反向传播计算每个w的梯度值,并保存到该w.grad属性中。
    如果没有进行tensor.backward()的话,梯度值将会是None,因此loss.backward()要写在optimizer.step()之前。

  3. optimizer.step()
    step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()函数前应先执行loss.backward()函数来计算梯度。
    注意:optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度是tensor.backward()方法产生的。

编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test(dataloader,model,loss_fn):
	size = len(dataloader.dataset)
	num_batches = len(datalaoder)
	test_acc,test_loss = 0, 0
	#当不进行训练时,停止梯度更新,节省内存消耗
	with torch.no_grad():
		for imgs ,traget in dataloader:
			imgs,traget = imags.to(device),target.to(device)
			#计算loss
			traget_pred = model(imgs)
			loss = loss_fn(target_pred,traget)
			test_loss += loss.item()
			test_acc += (traget_pred.argmax(1) == target).type(torch.float).sum().item()
		test_loss /= num_batches
		test_acc /= size
		return test_loss,test_acc

正式训练

epochs = 20
train_acc = []
train_loss = []
test_acc = []
test_loss = []

for epoch in range(epochs):
	model.train()
	epoch_train_acc,epoch_train_loss = train(train_dl,model,loss_fn,opt)
	model.eval()
	epoch_test_acc,epoch_test_loss = test(test_dl,model,loss_fn)
	train_acc.append(epoch_train_acc)
	train_loss.append(epoch_train_loss)
	test_acc.append(epoch_test_acc)
	test_loss.append(epoch_test_loss)
	template = ('Epoch:{:2d},Train_acc:{:.1f}%,Train_loss:{:.3f},Test_acc:{.1f}%,Test_loss:{.3f}')
	print(template.format(epoch+1,epoch_train_acc,epoch_train_loss,epoch_test_acc,epoch_test_loss))
print('Done')
  1. model.train()

model.train()的作用是启用 Batch NormalizationDropout

如果模型中有BN层(Batch Normalization)和Dropout,需要在训练时添加model.train()model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropoutmodel.train()是随机取一部分网络连接来训练更新参数。

  1. model.eval()

model.eval()的作用是不启用 Batch NormalizationDropout

如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropoutmodel.eval()是利用到了所有网络连接,即不进行随机舍弃神经元。

训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。

结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warning.filterwarningd("ignore")
plt.rcParam['font.sans-serif'] = ['SimHei']
plt.rcParam['axes.unicode_minus'] = False
plt.rcParams['figure.dpi'] = 100

from datetime import datetime
current_time = datetime.now()
epochs_range = range(epochs)

plt.figure(figsize = (12,3))
plt.subplot(1,2,1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值