- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/rnFa-IeY93EpjVu0yzzjkw) 中的学习记录博客**
- **🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)**
一、前期准备
1、设置GPU
如果设备上支持GPU就使用GPU,否则使用CPU
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torchvision import transforms, datasets
import os, PIL, pathlib, random
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
·torchvision.transforms
解析:
在 Pytorch 中 torchvision.transforms
模板提供了一系列用于图像预处理和数据增强的工具 (transforms
),这些工具可以方便对图像进行各种变换操作。
有以下几个作用:
1、数据预处理:
将原始图像数据转换成模型所需要的格式(例如:归一化、调整大小、转换为张量等)。
#举例
trans_ds = torchvision.datasets.MNIST('data',
train = True,
transform = torchvision.transforms.ToTensor(),#将数据转换成Tensor
download = True)
2、数据增强:
通过对数据图像进行随机变换(如旋转、翻转、剪裁等),增加数据多样性,防止数据过拟合。
还有其他用法,这里不详细展开。
·解析以下代码:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
这段代码的作用是设置设备。
device
: 这是一个变量,用于储存创建的Pytorch
的设备对象。
torch.device()
: 这个函数用于创建一个 Pytorch
的设备对象。根据条件表达式的结果,如果CUDA
可用,则将设备设置为‘cuda’(即GPU
),否则设置为‘CPU
’
torch.cuda.is_avaliable()
: 这个函数用来检查系统中是否有可用的CUDA
(GPU
)设备。如果返回True
,则表示系统支持CUDA
,否则返回False
。
简单来说,这段代码通过判断系统的GPU
是否可用,来动态选择将计算任务放在GPU
,还是在CPU
上进行处理,以实现最佳性能。
2、导入数据
data_dir = 'E:\data\第5天-没有加密版本\第5天\weather_photos'
data_dir = pathlib.Path(data_dir) #将其转换成Path对象
data_paths = list(data_dir.glob('*')) #path_dir是Path对象;.glob()是路径匹配方法;'*'表示匹配所有的文件跟文件夹,最后将其转换从列表(list)
classeNames = [str(path).split("\\")[5] for path in data_paths] #通过split()函数将路径进行分割获得各个文件的所属名称,并存储到ClasseName
classeNames #打印每个文件的名称
步骤一:使用pathlib.Path()
: 将字符串格式的文件/目录路径转换成 pathlib.Path
对象。
步骤二:使用data_dir.glob()
: 获取所有的文件路径,并存储在data_paths
中。
步骤三:通过split()
函数对data_paths
中的每个文件执行分割操作,获得各个文件所属的类别名称,并存储在classeNames
中。
步骤四:打印classeNames
列表,显示每个文件所属的类别名称。
import matplotlib.pyplot as plt
from PIL import Image
#指定图像文件夹路径
image_folder = 'E:\data\第5天-没有加密版本\第5天\weather_photos\cloudy'
#获取文件夹中的所有图像文件
#image是一个列表获取f;os.listdir是获取该目录(文件夹)下的所有子目录;endswith()是来判断该文件是否以括号内的格式结尾,是返回True
image_files = [f for f in os.listdir(image_folser) if f.endswith((".jpg",".png",".jpeg"))]
#创建Matplotlib图像
fig,axes = plt.subplots(3,8,figsize = (16,6)) #生成一个3行8列的子图网格
#使用列表推导式加载和显示图像
for ax,img_file in zip(axes.flat,image_files):
img_path = os.path.join(image_folder,img_file)
img = Image.open(img_path)
ax.imshow(img)
ax,axis('off')
#显示图像
plt.tight_layout()
plt.show()
axes.flat
: 将axes
(子图矩阵,如3行*8列)展平为一维迭代器;
os.listdir
:是获取该目录(文件夹)下的所有子目录;
endswith()
: 判断字符串是否以指定的后缀结尾,如果以指定后缀结尾返回 True
,否则返回 False
;
zip()
: 将一组图像文件与对应的绘图区域(即子图)进行关联
os.path.join()
: 将多个路径片段拼接成一个完整的路径;
Image.open()
:打开图像文件,并将其加载为图像对象;
plt.tight_layout()
: 自动调整子图的布局;
total_datadir = 'E:\data'
train_transforms = transforms.Compose([
transforms.Resize([224,224]), #将输入图片resize成统一尺寸
transforms.ToTensor(), #将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
transforms.Normalize( #标准化处理-->转换成标准正太分布(高斯分布),是模型更容易收敛
mean = [0.485,0.456,0.406], #数据集的均值
std = [0.229,0.224,0.225]) #数据集的标准差
])
total_data = datasets.imageFolder(total_datadir,transform = train_trainsforms)
total_data
datasets.imageFolder
: 自动将图像数据加载为适合训练和测试的格式,并支持多种数据预处理操作;
划分数据集
train_size = int(0.8*len(total_data)) #train_size为训练集大小,大小为总体数据大小的80%
test_size = len(total_data) - train_size #test_size为测试集大小,总数据集大小减去训练集大小
train_dataset,test_dataset = torch.utils.data.random_split(total_data,[train_size,test_size])
train_dataset,test_dataset
torch.utils.data.random_split()
: 进行数据集划分。该方法将总体数据total_data
按照指定的大小比例([train_size, test_size])随机划分为训练集和测试集,并将划分结果分别赋值给train_dataset
和test_dataset
两个变量。
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
batch_size = batch_size,
shuffle = True,
num_workers = 1)
test_dl = torch.utils.dat.DataLoader(test_dataset,
batch_size = batch_size,
shuffle = True,
num_workers = 1
for X,y in test_dl:
print("Shape of X [N,C,H,W] :",X.shape)
print("Shape of y :",y.shape,y.dtype)
break
train_dl
是 DataLoader
对象,它可以对数据集进行分批处理,并且可以自动进行数据 shuffling
,即打乱数据集的顺序。 在模型训练过程中,我们通常需要使用 DataLoader
来将数据分批加载到模型中进行训练。 需要注意的是,上述代码中并没有指定批次的大小,因为这个参数会在 DataLoader
初始化时进行指定。
Shape of X [N, C, H, W]:
N
: Batch size (批大小,即一次处理的样本数量)
C
: Channels (通道数,对于RGB图像通常是3)
H
: Height (图像高度)
W
: Width (图像宽度)
⭐torch.utils.data.DataLoader()
参数详解
torch.utils.data.DataLoader
是 PyTorch
中用于加载和管理数据的一个实用工具类。它允许你以小批次的方式迭代你的数据集,这对于训练神经网络和其他机器学习任务非常有用。DataLoader
构造函数接受多个参数,下面是一些常用的参数及其解释:
dataset
(必需参数):这是你的数据集对象,通常是torch.utils.data.Dataset
的子类,它包含了你的数据样本。batch_size
(可选参数):指定每个小批次中包含的样本数。默认值为1
。shuffle
(可选参数):如果设置为True
,则在每个epoch
开始时对数据进行洗牌,以随机打乱样本的顺序。这对于训练数据的随机性很重要,以避免模型学习到数据的顺序性。默认值为False
。num_workers
(可选参数):用于数据加载的子进程数量。通常,将其设置为大于0
的值可以加快数据加载速度,特别是当数据集很大时。默认值为0
,表示在主进程中加载数据。pin_memory
(可选参数):如果设置为True
,则数据加载到GPU
时会将数据存储在CUDA
的锁页内存中,这可以加速数据传输到GPU
。默认值为False
。drop_last
(可选参数):如果设置为True
,则在最后一个小批次可能包含样本数小于batch_size
时,丢弃该小批次。这在某些情况下很有用,以确保所有小批次具有相同的大小。默认值为False
。timeout
(可选参数):如果设置为正整数,它定义了每个子进程在等待数据加载器传递数据时的超时时间(以秒为单位)。这可以用于避免子进程卡住的情况。默认值为0
,表示没有超时限制。worker_init_fn
(可选参数):一个可选的函数,用于初始化每个子进程的状态。这对于设置每个子进程的随机种子或其他初始化操作很有用。
构建简单的CNN网络
对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。
import torch.nn.functional as F
class Network_bn(nn.Module): #Network_bn继承了nn.Module
def __init__(self): #构建类的方法
supper(Network_bn,self).__init__() #supper是对父类进行重写
"""
nn.conv2d()函数:
第一个参数(in_channels)是输入的channel数量
第二个参数(out_channels)是输出的channel数量
第三个参数(kernel_size)是卷积核大小
第四个参数(stride)是步长,默认为1
第五个参数(padding)是填充大小,默认为0
"""
#特征提取
self.conv1 = nn.Conv2d(in_channels = 3,out_channels = 12,kernel_size = 5,stride = 1,padding = 0) #卷积层
self.bn1 = nn.BatchNorm2d(12) #批量标准化
self.conv2 = nn.Conv2d(in_channels = 12,out_channels = 12,kernel_size = 5,stride = 1,padding = 0)
self.bn2 = nn.BatchNorm2d(12)
self.pool1 = nn.MaxPool2d(2,2) #池化层
self.conv3 = nn.Conv2d(in_channels = 12,out_channels = 24,kernel_size = 5,stride = 1,padding = 0)
self.bn3 = nn.BatchNorm2d(24)
self.conv4 = nn.Conv2d(in_channel = 24,out_channels = 24,kernel_size = 5 , stride = 1,padding =0)
self.bn4 = nn.BatchNorm2d(24)
self.pool2 = nn.MaxPool2d(2,2)
self.fc1 = nn.Linear(24*50*50,len(classeNames)) #连接层
def forward(self,x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = self.pool1(x)
x = F.relu(self.bn3(self.conv3(x)))
x = F.relu(self.bn4(self.conv4(x)))
x = self.pool2(x)
x = x.view(-1,24*50*50)
x = self.fc1(x)
return x
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
model = Network_bn.to(device)
model
⭐1. torch.nn.Conv2d()
详解
函数原型:
torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)
关键参数说明:
● in_channels ( int )
– 输入图像中的通道数
● out_channels ( int )
– 卷积产生的通道数
● kernel_size ( int or tuple )
– 卷积核的大小
● stride ( int or tuple , optional )
– 卷积的步幅。默认值:1
● padding ( int , tuple或str , optional )
– 添加到输入的所有四个边的填充。默认值:0
● padding_mode (字符串,可选)
– ‘zeros’, ‘reflect’, ‘replicate’或’circular’. 默认:‘zeros’
⭐2. torch.nn.Linear()
详解
函数原型:
torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)
关键参数说明:
● in_features
:每个输入样本的大小
● out_features
:每个输出样本的大小
⭐3. torch.nn.MaxPool2d()
详解
函数原型:
torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
关键参数说明:
● kernel_size
:最大的窗口大小
● stride
:窗口的步幅,默认值为kernel_size
● padding
:填充值,默认为0
● dilation
:控制窗口中元素步幅的参数
大家注意一下在卷积层和全连接层之间,我们可以使用之前是torch.flatten()
也可以使用我下面的x.view()
亦或是torch.nn.Flatten()
。torch.nn.Flatten()
与TensorFlow
中的Flatten()
层类似,前两者则仅仅是一种数据集拉伸操作(将二维数据拉伸为一维),torch.flatten()
方法不会改变x本身,而是返回一个新的张量。而x.view()
方法则是直接在原有数据上进行操作。
训练模型
设置超参数
loss_fn = nn.CrossEntropyLoss() #创建损失函数
learn_rate = 1e-4 #学习率
opt = torch.optim.SGD(model.parameters(),lr =learn_rate)
编写训练函数
#训练循环
def train(dataloader,model,loss_fn,optimizer):
size = len(dataloader.dataset) #训练集的大小,一共60000张
num_batches = len(dataloader) #批次数量,1875(60000/32)
train_loss,train_acc = 0 ,0 #初始化训练损失值跟正确率
for X,y in dataloader:
X,y = X.to(device),y.to(device)
#计算预测误差
pred = model(x) #网络输出
loss = loss_fn(pred,y) #计算网络输出与真实值之间的差距,targets为真实值,计算二者差值
#反向传播
optimizer.zero_grad() #grad属性归零
loss.backward() #反向传播(计算梯度值)
optimizer.step() #每一步自动更新 (自动更新梯度值)
#记录acc与loss
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc,train_loss
-
optimizer.zero_grad()
函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0
,即上一次的梯度记录被清空。 -
loss.backward()
PyTorch
的反向传播(即tensor.backward()
)是通过autograd包来实现的,autograd
包会根据tensor
进行过的数学运算来自动计算其对应的梯度。
具体来说,torch.tensor
是autograd
包的基础类,如果你设置tensor
的requires_grads
为True
,就会开始跟踪这个tensor
上面的所有运算,如果你做完运算后使用tensor.backward()
,所有的梯度就会自动运算,tensor
的梯度将会累加到它的.grad属性里面去。
更具体地说,损失函数loss
是由模型的所有权重w
经过一系列运算得到的,若某个w
的requires_grads
为True
,则w的所有上层参数(后面层的权重w
)的.grad_fn
属性中就保存了对应的运算,然后在使用loss.backward()
后,会一层层的反向传播计算每个w
的梯度值,并保存到该w
的.grad
属性中。
如果没有进行tensor.backward()
的话,梯度值将会是None
,因此loss.backward()
要写在optimizer.step()
之前。 -
optimizer.step()
step()
函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()
函数前应先执行loss.backward()
函数来计算梯度。
注意:optimizer
只负责通过梯度下降进行优化,而不负责产生梯度,梯度是tensor.backward()
方法产生的。
编写测试函数
测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器
def test(dataloader,model,loss_fn):
size = len(dataloader.dataset)
num_batches = len(datalaoder)
test_acc,test_loss = 0, 0
#当不进行训练时,停止梯度更新,节省内存消耗
with torch.no_grad():
for imgs ,traget in dataloader:
imgs,traget = imags.to(device),target.to(device)
#计算loss
traget_pred = model(imgs)
loss = loss_fn(target_pred,traget)
test_loss += loss.item()
test_acc += (traget_pred.argmax(1) == target).type(torch.float).sum().item()
test_loss /= num_batches
test_acc /= size
return test_loss,test_acc
正式训练
epochs = 20
train_acc = []
train_loss = []
test_acc = []
test_loss = []
for epoch in range(epochs):
model.train()
epoch_train_acc,epoch_train_loss = train(train_dl,model,loss_fn,opt)
model.eval()
epoch_test_acc,epoch_test_loss = test(test_dl,model,loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
template = ('Epoch:{:2d},Train_acc:{:.1f}%,Train_loss:{:.3f},Test_acc:{.1f}%,Test_loss:{.3f}')
print(template.format(epoch+1,epoch_train_acc,epoch_train_loss,epoch_test_acc,epoch_test_loss))
print('Done')
model.train()
model.train()
的作用是启用 Batch Normalization
和 Dropout
。
如果模型中有BN
层(Batch Normalization
)和Dropout
,需要在训练时添加model.train()
。model.train()
是保证BN
层能够用到每一批数据的均值和方差。对于Dropout
,model.train()
是随机取一部分网络连接来训练更新参数。
model.eval()
model.eval()
的作用是不启用 Batch Normalization
和 Dropout
。
如果模型中有BN
层(Batch Normalization
)和Dropout
,在测试时添加model.eval()
。model.eval()
是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN
层的均值和方差不变。对于Dropout
,model.eval()
是利用到了所有网络连接,即不进行随机舍弃神经元。
训练完train
样本后,生成的模型model
要用来测试样本。在model(test)
之前,需要加上model.eval()
,否则的话,有输入数据,即使不训练,它也会改变权值。这是model
中含有BN
层和Dropout
所带来的的性质。
结果可视化
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warning.filterwarningd("ignore")
plt.rcParam['font.sans-serif'] = ['SimHei']
plt.rcParam['axes.unicode_minus'] = False
plt.rcParams['figure.dpi'] = 100
from datetime import datetime
current_time = datetime.now()
epochs_range = range(epochs)
plt.figure(figsize = (12,3))
plt.subplot(1,2,1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()