递归模板
func recursion(level int, param1, param2,...){
//recursion terminator 递归终止条件
if level > MAX_LEVEL{
process_result
return
}
//process logic in current level 处理当前层逻辑
process(level, data...)
//drill down 下探到下一层
recursion(level+1, param1, param2, ...)
//reverse the current level status if needed 清理当前层
}
回溯
回溯算法,又称为“试探法”。解决问题时,每进行一步,都是抱着试试看的态度,如果发现当前选择并不是最好的,或者这么走下去肯定达不到目标,立刻做回退操作重新选择。这种走不通就回退再走的方法就是回溯算法。
例如,在解决列举集合 {1,2,3} 中所有子集的问题中,就可以使用回溯算法。从集合的开头元素开始,对每个元素都有两种选择:取还是舍。当确定了一个元素的取舍之后,再进行下一个元素,直到集合最后一个元素。其中的每个操作都可以看作是一次尝试,每次尝试都可以得出一个结果。将得到的结果综合起来,就是集合的所有子集。
回溯VS递归
很多人认为回溯和递归是一样的,其实不然。在回溯法中可以看到有递归的身影,但是两者是有区别的。
回溯法从问题本身出发,寻找可能实现的所有情况。和穷举法的思想相近,不同在于穷举法是将所有的情况都列举出来以后再一一筛选,而回溯法在列举过程如果发现当前情况根本不可能存在,就停止后续的所有工作,返回上一步进行新的尝试。
递归是从问题的结果出发,例如求 n!,要想知道 n!的结果,就需要知道 n*(n-1)! 的结果,而要想知道 (n-1)! 结果,就需要提前知道 (n-1)*(n-2)!。这样不断地向自己提问,不断地调用自己的思想就是递归。
回溯和递归唯一的联系就是,回溯法可以用递归思想实现。
回溯算法的实现过程
使用回溯法解决问题的过程,实际上是建立一棵“状态树”的过程。例如,在解决列举集合{1,2,3}所有子集的问题中,对于每个元素,都有两种状态,取还是舍,所以构建的状态树为:
图1 状态树
回溯算法的求解过程实质上是先序遍历“状态树”的过程。树中每一个叶子结点,都有可能是问题的答案。图 1 中的状态树是满二叉树,得到的叶子结点全部都是问题的解。
在某些情况下,回溯算法解决问题的过程中创建的状态树并不都是满二叉树,因为在试探的过程中,有时会发现此种情况下,再往下进行没有意义,所以会放弃这条死路,回溯到上一步。在树中的体现,就是在树的最后一层不是满的,即不是满二叉树,需要自己判断哪些叶子结点代表的是正确的结果。
分治模板
# Python
def divide_conquer(problem, param1, param2, ...):
# recursion terminator
if problem is None:
print_result
return
# prepare data
data = prepare_data(problem)
subproblems = split_problem(problem, data)
# conquer subproblems
subresult1 = self.divide_conquer(subproblems[0], p1, ...)
subresult2 = self.divide_conquer(subproblems[1], p1, ...)
subresult3 = self.divide_conquer(subproblems[2], p1, ...)
…
# process and generate the final result
result = process_result(subresult1, subresult2, subresult3, …)
# revert the current level states
回溯模板
result = []
def backtrack(路径, 选择列表):
if 满足结束条件:
result.add(路径)
return
for 选择 in 选择列表:
做选择
backtrack(路径, 选择列表)
撤销选择
实战题目
-
爬楼梯(阿里巴巴、腾讯、字节跳动在半年内面试常考)
-
括号生成 (字节跳动在半年内面试中考过)
-
翻转二叉树 (谷歌、字节跳动、Facebook 在半年内面试中考过)
-
验证二叉搜索树(亚马逊、微软、Facebook 在半年内面试中考过)
-
二叉树的最大深度(亚马逊、微软、字节跳动在半年内面试中考过)
-
二叉树的最小深度(Facebook、字节跳动、谷歌在半年内面试中考过)
-
二叉树的序列化与反序列化(Facebook、亚马逊在半年内面试常考)
-
二叉树的最近公共祖先(Facebook 在半年内面试常考)
-
从前序与中序遍历序列构造二叉树(字节跳动、亚马逊、微软在半年内面试中考过)
-
组合(微软、亚马逊、谷歌在半年内面试中考过)
-
全排列(字节跳动在半年内面试常考)
-
全排列 II (亚马逊、字节跳动、Facebook 在半年内面试中考过)
-
Pow(x, n) (Facebook 在半年内面试常考)
-
子集(Facebook、字节跳动、亚马逊在半年内面试中考过)
-
多数元素 (亚马逊、字节跳动、Facebook 在半年内面试中考过)
-
电话号码的字母组合(亚马逊在半年内面试常考)
-
N 皇后(字节跳动、苹果、谷歌在半年内面试中考过)