hdu5379 dfs+排列组合

题意是把1--n放到一个节点数为n的树上,满足一个节点的儿子节点的值是连续的,任何一个子树内的值的连续的

首先对于任何一个子树来说,根节点一定在最旁边(假如在两个子节点中间,破坏了第一个规定),然后,一个根节点的儿子中,最多只有两个儿子可以有自己的儿子(不然无法同时满两个条件)。

最后dfs再排列组合一下就好了

#pragma comment(linker, "/STACK:102400000,102400000")
#include <iostream>
#include<stdio.h>
#include<string.h>
#include<vector>
#include<algorithm>
#include<cmath>
#include<map>
#include<set>
#include<queue>
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1 | 1
#define lowbit(x) x&(-x)
using namespace std;
const int N=1e5+10;
long long inf=1e15;
const int MOD=1e9+7;
int T,n,m,k,x,y,z,l,tot,t;
int cas=1;
int son[N];
bool ok;
vector<int> G[N];
long long A[N];
long long dp[N];/*dp[i] 表示以i为根,且根在子树中排在最左边的分配数目*/
void dfs(int x,int fa){
    son[x]=1;
    int num=0;/*所有儿子数*/
    int cnt=0;/*有自己的儿子的儿子数*/
    long long res=1;
    for(int i=0;i<G[x].size();i++){
            int u=G[x][i];
            if(u==fa) continue;
            num++;
            dfs(u,x);
            son[x]+=son[u];
            if(son[u]>1){
                cnt++;
                res=(res*dp[u])%MOD;
            }
    }
    if(cnt>2){
        ok=true;
        return;
    }else if(cnt==2 || cnt==1){/*两个大儿子中间夹着一排叶子儿子  或者 一个大儿子旁边一排叶子儿子,大儿子可以左右换一下,所以*2 */
        res=(res*2*A[num-cnt])%MOD;
    }else if(cnt==0){/*儿子全是叶子节点*/
       res=(res*A[num-cnt])%MOD;
    }
    dp[x]=res;
}
int main()
{
#ifndef  ONLINE_JUDGE
 freopen("aaa","r",stdin);
#endif
    int T;
    A[0]=1;
    for(int i=1;i<N;i++) A[i]=(A[i-1]*i)%MOD;
    scanf("%d",&T);
   while(T--){
     scanf("%d",&n);
     for(int i=1;i<=n;i++) G[i].clear();
     for(int i=1;i<n;i++){
        int u,v;
        scanf("%d%d",&u,&v);
        G[u].push_back(v);
        G[v].push_back(u);
     }
     ok=false;
     dfs(1,-1);
     long long ans=(dp[1]*2)%MOD;/*根分到最小值和最大值两种情况*/
     if(ok) ans=0;/*不可能的情况*/
     if(n==1) ans=1;/*n=1的情况另外考虑*/
     printf("Case #%d: %I64d\n",cas++,ans);

   }

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值