single-source shortest path in directed graph

two common operations vertex initialisation and relax

vertex initialisation -> set key of each vertex to max value; set precedence to null; set key of s (start vertex) to 0;

relax(u,v,w) -> set key of vertex v to lower value u.key + w(u,v) if any. If yes, set v.precedence to u

- Bellman-Ford, O(VE)

  • take n-1 rounds of relaxes of each edge.
  • can be used to detect negative weight loop which doesn't has shorted path

- topological sort for PERT (Program Execute and Review Technique),  O(V + E)

  • sort vertices in topological order
  • for each vertex, relax on its all adjacent vertices.
  • find key path of PERT

- Dijkstra, O((V + E)lgv), only for non-negative weight graph

  • sort vertex in non-decreasing order on key of vertex (put vertices in priority queue)
  • take vertex from the queue and relax on its all adjacent vertices. order is updated in the queue.

- shortest path on directed graph for System of Difference Constraints

  • constraints, xj-xi <= w. (i,j belong to V), the number of constraints should exceed |V|
  • n = |V|, is number of vertices for xi.
  • w is weight of edge (vi, vj)
  • add one more node v0 and edges (v0, vi) with weight of 0
  • shortest path (v0, v1), (v0, v2)... is solution of xi.



Shortest Path

03-10

Problem DescriptionnnWhen YY was a boy and LMY was a girl, they trained for NOI (National Olympiad in Informatics) in GD team. One day, GD team’s coach, Prof. GUO asked them to solve the following shortest-path problem.nnThere is a weighted directed multigraph G. And there are following two operations for the weighted directed multigraph:nn(1) Mark a vertex in the graph.nn(2) Find the shortest-path between two vertices only through marked vertices.nnFor it was the first time that LMY faced such a problem, she was very nervous. At this moment, YY decided to help LMY to analyze the shortest-path problem. With the help of YY, LMY solved the problem at once, admiring YY very much. Since then, when LMY meets problems, she always calls YY to analyze the problems for her. Of course, YY is very glad to help LMY. Finally, it is known to us all, YY and LMY become programming lovers.nnCould you also solve the shortest-path problem?nnInputnnThe input consists of multiple test cases. For each test case, the first line contains three integers N, M and Q, where N is the number of vertices in the given graph, N≤300; M is the number of arcs, M≤100000; and Q is the number of operations, Q ≤100000. All vertices are number as 0, 1, 2, … , N - 1, respectively. Initially all vertices are unmarked. Each of the next M lines describes an arc by three integers (x, y, c): initial vertex (x), terminal vertex (y), and the weight of the arc (c). (c > 0) Then each of the next Q lines describes an operation, where operation “0 x” represents that vertex x is marked, and operation “1 x y” finds the length of shortest-path between x and y only through marked vertices. There is a blank line between two consecutive test cases.nnEnd of input is indicated by a line containing N = M = Q = 0.nnOutputnnStart each test case with "Case #:" on a single line, where # is the case number starting from 1.nnFor operation “0 x”, if vertex x has been marked, output “ERROR! At point x”.nnFor operation “1 x y”, if vertex x or vertex y isn’t marked, output “ERROR! At path x to y”; if y isn’t reachable from x through marked vertices, output “No such path”; otherwise output the length of the shortest-path. The format is showed as sample output.nnThere is a blank line between two consecutive test cases.nnSample Inputnn5 10 10 1 2 6335 0 4 5725 3 3 6963 4 0 8146 1 2 9962 1 0 1943 2 1 2392 4 2 154 2 2 7422 1 3 9896 0 1 0 3 0 2 0 4 0 4 0 1 1 3 3 1 1 1 0 3 0 4 0 0 0nnSample OutputnnCase 1: ERROR! At point 4 ERROR! At point 1 0 0 ERROR! At point 3 ERROR! At point 4 问答

没有更多推荐了,返回首页