【模板】多源最短路径(Floyd算法)

动态规划思想:用d[i][j][k]表示“若只经过编号为1~k的节点(除了起点和终点),从节点i到节点j的最短路径的长度”。d[i][j][k]=min{d[i][j][k-1],d[i][k][k-1]+d[k][j][k-1]},借用背包问题的思想,d[i][j][k]只继承d[][][k-1]或从d[][][k-1]更新,所以可以舍弃[k]这一维。d[i][j]初始化为i->j的边权(若无边则为无穷大,若i=j则为0)。

主代码段如下:

for(int k=1;k<=n;k++)
	for(int i=1;i<=n;i++)
		for(int j=1;j<=n;j++)
			d[i][j]=min(d[i][j],d[i][k]+d[k][j]);

 注意:k这一维必须置于循环的最外侧,因为在“只经过1~k个节点的路径长度”更新时,使用的数据必须是“只经过1~k-1个节点的最短路径长度”,所以在第k轮更新时,第k-1轮必须已经完全更新结束。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值