Java-动态规划学习(一)

本文介绍了动态规划的基本概念,强调了其通过递推和分解问题来寻找整体解决方案的核心思想。文章详细阐述了动态规划的两个关键步骤:状态定义和状态转移方程的建立,并以求解最大连续序列和为例,解释了如何将问题转化为可求解的状态,并给出相应的状态转移方程和解题代码片段。
摘要由CSDN通过智能技术生成

动态规划的定义
动态规划的意义就是通过采用递推(或者分而治之)的策略,通过解决大问题的子问题从而解决整体的做法。动态规划的核心思想是巧妙的将问题拆分成多个子问题,通过计算子问题而得到整体问题的解。而子问题又可以拆分成更多的子问题,从而用类似递推迭代的方法解决要求的问题。

动态规划的核心解题步骤
第一步: 状态的定义
第二步: 状态转移方程的定义
状态指的是在求解问题时对问题的转换。
状态的定义:
如题:

求一个数列中最大连续子序列的和。
例如:
{ -2, 11, -4, 13, -5, -2 }
则最大的连续序列为:
{11,-4,13}
为方便起见,如果所有整数均为负数,则最大子序列和为0

将问题进行转换:
Fk作为第k项前的最大连续序列和,求Fk到Fn的最大值Fx

像这样把一个没有头绪的问题,转换为一个可以求解的问题的过程就是状态的定义
状态转移方程的定义:
对于上述已经转换成一系列问题,则我们要关注的点就在于:如何能够用前一项或者前几项的信息得到下一项,这种从最优子状态转换为下一个最优状态的思路就是动态规划的核心。
此时的方程为:
Fk= max{Fk-1, Ak}
Ak= Ak-1 > 0? Ak-1+array[k] : array[k];
Fk是前k项的最大子序列和,Ak以第k项作为结尾的子序列最大值,这样就可以使每一个状态都是最优转态,然后找到其中大的最大值
此时就可以写出代码

public int MaxSubSequence(int[] array) {
        int kSum;
        int MaxSum;
        int i = 0;
        kSum = MaxSum = 0;
        for (; i < array.length; ++i) {
            kSum += array[i];
            if (kSum > MaxSum) {
                MaxSum = kSum;
            } else if (kSum < 0) {
                kSum = 0;
            }
        }
        return MaxSum;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值